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ABSTRACT 
 
The study of implantology has evolved since its introduction into dentistry. Apart from other aspects of an implant, 
osseointegration has been of prime interest to researchers and practitioners. The study of osseointegration alone has 
lead to many discoveries regarding the implant’s macro and micro design and has been used very advantageously so 
far. Although peri-implant healing has already been studied in depth, there is little information on the genetic influence 
on peri-implant bone healing.  The purpose of this review is to analyze and sequence the events of peri-implant healing 
and to identify all the genes and their processes that lead to successful peri-implant healing.  
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INTRODUCTION 
 
Osseointegration is a term frequently used to describe 
successful healing between implant surface and bone 
[1]. Since inception of implantology, mechanism and 
time frame for osseointegration has been an enigma. 
 
Earlier known as “Bone Bonding”[2], 
osseointegration still has no exact definition in 
literature, it has been defined as, “A direct structural 
and functional connection between ordered, living 
bone and the surface of a load carrying implant, is 
critical for implant stability and is considered a pre-
requisite for implant loading and long term clinical 
success of endosseous dental implants”[3]. Zarb and 
Albrektsson described it as, “A time dependent 
healing process whereby clinically asymptomatic rigid 
fixation of alloplastic materials is achieved, and 
maintained, in bone during functional loading” [3].   
 
Osseointegration is a dynamic complex interaction 
between the implant surface and peri-implant bed at 

the cellular/molecular level. Several factors together 
promote this cellular interaction with implant surfaces. 
This review will explore the ideal requisites for peri-
implant bone healing and the various stages of 
osseointegration. 
 
Ideal Requisites for Osseointegration- 

1. Implant biomaterial. 
2. Implant surface topography and energy. 
3. Peri-implant bed preparation. 
4. Primary stability. 

 
 
Implant Biomaterial- 
Titanium and its alloys can be classified as α-type, β-
type and α+β-type. 
α-type alloys are those that have certain elements 
dissolved in titanium matrix and are strong solution 
strengtheners and produce little change from α to β 
stage of titanium at its transformation temperature [β 
transus for pure Ti- 885°C] and β to α on cooling. Such 
elements are called as α-stabilizers, eg- Al, Sn, Ga and 
Zr. 
 
β-type alloys are those that contain elements that 
decrease this phase transformation of titanium on 
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cooling. Such elements are called as β-stabilizers eg- 
V, Mo, Nb, Ta and Cr. 
 
α+β-type alloys are those that contain up to 10-50% β 
phase at room temperature. These have a combination 
of both α and β stabilizers. E.g. - Ti-6Al-4V [4]. 
 
Currently pure titanium and α+β type alloys are used 
extensively in both medical and dental fields, 
specifically for dental and orthopedic implants. 
Following are the titanium and its alloys that are being 
used today- 
 

1. CpTi- 
Commercially pure titanium comes under the 
unalloyed grades of ASTM specification; 
there are five grades of CpTi- 
a. Grade I- 99.5% Ti. 
b. Grade II-99.3% Ti. 
c. Grade III- 99.2% Ti. 
d. Grade IV- 99.0% Ti. 
e. Grade VII- 99.4% Ti. 

2. Ti-6Al-4V. 
3. Ti-6Al-4V ELI. 
4. Ti-6Al-7Nb. 
5. Ti-3Al-2.5V. 
6. Ti-5Al-3Mo-4Zr. 
7. Ti-5Al-2.5Fe.  

 
Implant Surface Topography and Energy- 
Response of tissues towards an implant is majorly 
governed by the implant surface composition and 
surface characteristics. For an implant to successfully 
osseointegrate it is important that it elicits a certain 
biological response from the surrounding peri-implant 
bed [5-7]. 
In an effort to elicit a faster biological response and to 
procure a better BIC several surface modifications 
have been developed, which can be broadly 
categorized as- 

a. Morphological. 
b. Physiochemical. 
c. Surface coatings. 
d. Biochemical.  

 
These have actually lead to development of new 
surfaces like TiO2 Nano-tube Surface [8,9] which is 
touted to reduce osseointegration time and also greatly 
increase BIC [10]. Research has shown that doping 
these TiO2 Nano-tubes with silicon and silver particles 
promoted bone proliferation [8, 11, 12]. 
 
Surface modifications impart the implant topography 
with a considerable degree of roughness, composition, 
and charge. The above stated three factors contribute 

to surface energy of an implant [5, 13, 14, 15]. This 
surface energy decides the implant hydrophillicity and 
allows for adhesion of various cells and proteins that 
initiate the process of osseointegration [15-18]. 
 
Peri-Implant Bed Preparation- 
Peri-implant bed/osteotomy site is the area where the 
actual healing occurs; it is the source for all the factors 
that contribute to the different stages of 
osseointgration.  
 
The preparation of the bed should be least violent as 
drilling can lead to development of frictional heat 
which is deleterious to the peri-implant bone and will 
hamper osseointegration.  
According to literature, temperature of the osteotomy 
site should not exceed 47°C for 1 minute above which 
protein denaturation, osteoblastic death and loss of 
necessary local factors occurs [3]. Although this 
phenomenon is still questionable yet it cannot be 
ignored. 
 
Primary Stability- 
Initial stability of an implant is of prime importance 
for successful healing of peri-implant site [2, 19]. A 
study in 2005 emphasized that initial stability of an 
implant allowed successful angiogenesis and 
osteogenesis [19, 20]. In many ways implant stability 
and healing of surrounding tissues is comparable to 
healing of a fracture as immobilization of fractured 
segments is required to promote union, otherwise 
chondrogenesis occurs between fractured segments 
[21].  
In case of implants excessive motion promotes fibrous 
and connective tissue growth over bone growth [22].  
 
Literature states that a micro-motion greater than 
150µm leads to fibrous union of an implant [2], 
whereas some studies suggested that micro-motion 
less than 25-50µm is beneficial to bone formation [23]. 
Thus, it can be stated that close contact between the 
implant and bone is required for adequate primary 
stability which leads to proper osseointegration. 
After considering the four requisites required for 
osseointegration it becomes imperative to look into the 
interactions occurring between the implant and its 
surrounding tissues. 
 
The surgical preparation prior to implant placement 
allows the implant to first come in contact with blood, 
which starts a biological response at the molecular 
level and is a fascinating cascade leading to 
osseointegration. 
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The First Contact- 
As soon as the implant approaches the osteotomy site, 
the first tissue it comes in contact with is blood. This 
results in a cascade of processes that includes- protein 
deposition, coagulation, inflammation, and tissue 
formation. These processes are greatly influenced by 
implant surface chemistry [24].  
 
Protein Deposition- 
Within seconds of implant to blood contact a 
monolayer of proteins gets deposited on the implant 
surface, it is because of this protein monolayer that 
platelets and MSCs are able to interact with the 
implant surface. There are over 200 proteins in blood 
and only a selective few appear in this monolayer [24, 
25]. This selective protein adsorption can be attributed 
to the surface charge of the implant. 
 
Since proteins are charged molecules they change their 
3-dimensional shape to conform their surrounding 
electrochemical environment, thus the surface charge 
of an implant plays a major role in selection of specific 
proteins and their adsorption. Also, this conformation 
of proteins determines whether specific bioactive 
peptide sequences will allow attachment of incoming 
cells [25, 26]. These bioactive peptide sequences are 
commonly known as “Integrins”. The most commonly 
found sequence is the arginine-glycine-aspartic acid 
[RGD] sequence that is responsible for cellular 
binding, signaling and response.  
 
The kind and type of protein adsorbed determines the 
hosts response to the foreign object and therefore, 
maybe a deciding factor for successful healing. The 
first and most common proteins to get adsorbed are 
fibronectin and vitronectin that contain the RGD 
sequence and therefore, allow interactions with MSCs 
[13, 24, 26]. Apart from fibronectin and vitronectin; 
fibrinogen, von Willebrand factor, complement and 
IgG are also adsorbed and initiate platelet activation, 
coagulation and inflammation. 
 
Platelet Activation- 
Within five seconds of contact with blood the first 
cells to interact with implant surface are platelets [27, 
28].  
 
Platelets are basically small cells derived from 
megakaryocytes and get activated on contact with 
foreign materials, injured endothelium, sub-
endothelium and or by factors released from other 
platelets or cells, this activation results in a number of 
intracellular processes.  
 

Bioactive molecules within the platelets like ADP, 
PDGF, histamines and serotonin are released into the 
peri-implant environment. This leads to expression of 
a cell surface glycoprotein on the membrane of the 
platelet called P-selectin. P-selectin expression helps 
in platelet adhesion to neutrophills, monocytes and 
leukocytes, meanwhile activated platelets form micro-
particles. These micro-particles are pro-coagulants 
and bind to fibrinogen and fibrin leading to expression 
of factors tenase and prothrombinase in the cell 
membrane [28, 29].  
 
Platelet adhesion is mediated by two membrane-bound 
receptors GP-Ib and GP-2b/IIIa. GP-Ib requires the 
immobilized von Willebrand factor as a co-receptor 
and GP-2b/IIIa binds to proteins adsorbed on implant 
surface [30]. 
 
Multiple platelet activation leads to formation of a clot 
via fibrinogen which supports platelet aggregation 
through Ca2+ dependent binding with the activated 
GP-2b/IIIa receptors. Simultaneously, conversion of 
prothrombin to thrombin leads to the growing of 
thrombus via a stable fibrin polymer in the presence of 
activated factor XIII. [29, 30]. This leads to formation 
of a stable clot that allows for osteoconduction. Davies 
and Hosseini defined osteoconduction as the 
“recruitment and migration of osteogenic cells” [31]. 
The clot acts as a provisional matrix with adhesive 
plasma proteins allowing for cellular adhesion and 
migration from capillary bed towards the implant, and 
this occurs because of presence of signaling molecules 
like cytokines, chemoattractants, mitogens and growth 
factor [27, 29, 31, 32]. 
 
TGF-βI and II are very important signaling molecules 
found within the platelet and have recently been 
showed to induce migration of osteoprogenitor cells 
through the SMAD signaling pathway [33].  
 
Chemoattractants therefore, released from activated 
platelets influence migration of monocytes, 
neutrophills and MSCs towards the implant surface, 
this is why the fibrin clot is essential for mediating 
both inflammation and osteoconduction [26, 34]. 
 
Inflammation- 
An inflammatory response occurs simultaneously with 
coagulation and platelet activation [29]. After platelets 
the next cells to migrate to the peri-implant space are 
neutrophills and monocytes that initiate an 
inflammatory response. Generally neutrophills arrive 
first with peak levels at 24-48 hours. After 48 hours 
monocytes transform to macrophages and become the 
dominant leukocytes [23, 32].  
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With monocyte transformation and activation of 
leukocytes within capillaries [cytokine mediated] 
there is release of inflammatory mediators like IL-I, 
IL-6, IL-8, TNF-α and macrophage colony stimulating 
factor [28, 29, 35]. 
 
The hematoma in the peri-implant space is similar to a 
fracture hematoma, with expression of same signaling 
molecules, relative mRNA expression levels for 
signaling molecules of fracture hematoma shows 
variations overtime with various stages of healing [36, 
37, 38].  
 
Similarly, with expression of inflammatory mediators, 
members of TGF-β superfamily are also expressed 
within 24 hours, these members include BMPs and 
GDFs. Osteoconductive factors have also shown 
improved bone formation during implant bed healing 
in in-vivo animal models [11, 33, 35, 39-42]. 
 
Osteogenic cells require blood supply and therefore, 
angiogenesis is an essential requirement. Expression 
of angiogenic factors are naturally accompanied with 
metallomatrix proteinase, which degrades the 
extracellular matrix of pre-existing capillaries and 
allows the angiogenic factors to stimulate growing 
new vessels [43]. 
 
A very important angiogenic factor is the VEGF which 
is released due to destruction of the extracellular 
matrix of the capillaries. VEGF leads to stimulation of 
endothelial cells and causes cell division to form new 
vessels. It also causes differentiation of peri-vascular 
cells to form endothelial cells and smooth muscles. 
Since osteoblasts have been found to contain VEGF 
receptors, it is believed that VEGF also has the 
capacity to modulate osteoblastic functions [44]. Apart 
from VEGF; PDGF, angiopoietin, bFGF are also 
important factors for angiogenesis [43]. 
 
The complex interaction within the peri-implant space 
leads to recruitment, migration and differentiation of 
MSCs which participate in osteogenesis. 
 
Osteogenesis- 
MSCs get recruited from marrow, pericytes and 
cambium layer of periosteum [45, 46]. These cells 
travel through the fibrin clot towards implant surface 
which is mediated by numerous factors released by 
platelets and leukocytes [34].  
 
Osteoblastic Differentiation- Signal Transduction 
& Transcriptional Regulation- 
Osteoblastic differentiation is an extremely well 
choreographed process. Recent studies involving gene 

targeting in mice lead to a better understanding of the 
factors involved at a molecular level.  
 
Osteoblastogenesis employs MSCs that can 
differentiate into chondrocytes, adipocytes and 
myoblasts [47]. 
 
There are three stages of osteoblastogenesis- 

a) Proliferation. 
b) Matrix maturation. 
c) Mineralization. 

 
These three stages involve use of distinct osteoblastic 
markers, which are [48, 49]- 

a) ALP. 
b) Colla I. 
c) OPN. 
d) BSP. 
e) OCN. 
f) PPR. 

 
The cytokines that control this process are [50]- 

a) TGF β. 
b) BMP- 2, 4, 7 and their inhibitors noggin, 

chordin, gremlin and sclerostin. 
 
Hormones that positively impact osteoblastic 
differentiation are- 

a) IGF I. 
b) PTH. 
c) PTHrP. 
d) 1, 25[OH]2D3. 
e) Leptin. 
f) Glucocorticoids. 
g) Notch Pathway. 
h) Members of IL-6 family. 

 
Signaling for Osteoblastogenesis- 
Wnt Signaling- 
Wnts are a group of GPs with many inhibitors and are 
ligands for frizzled receptors [FZD]. There are two 
types of Wnts [51, 52]- 

i. Activates Canonical Signaling Pathway. 
ii. Non-Canonical Wnt protein that activates 

heterotrimeric GPs. 
 
Out of the two the canonical pathway is the most 
important in case of bone biology [53, 54]. 
In the “On-State” of the canonical pathway the Wnt 
proteins bind to the FZD / LRP5/6 complex and 
generates certain signals through Disheveled, Axin 
and Frat-I proteins to inhibit GSK-III and stabilize the 
β-Catenin which leads to transcription of target genes 
by translocating itself into the nucleus [55, 56, 57]. 
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In the “Off-State” the nuclear and cytoplasmic levels 
of β-Catenin become lowered in the cells but still 
remains associated with the cadherins of plasma 
membrane which spares it from degradation [57].  
 
TGF-β Signaling- 
BMPs are a group of phylogenetically conserved 
molecules having potent osteogenic effects and were 
first identified due to their ability to cause 
endochondral bone formation [58, 59, 60] 
 
The members of the TGF-β superfamily utilize Type-
I and Type-II transmembrane Serine/Threonine 
Kinase dual receptor system for signaling. This leads 
to expression of BMP-1, 2, 3, 4, 6, 7, and 9. BMP- 1, 
2, 4, 6, 7, and 9 promote bone formation whereas 
BMP-3 serves as a negative regulator [58, 61, 62, 63, 
64].  
 
BMPs act via SMAD-Dependent and SMAD-
Independent pathways, which are the major 
transducers for transmembrane dual receptor systems. 
There are three kinds of SMADs [65, 66]- 

a) R-SMAD. 
b) Co-SMAD. 
c) I-SMAD. 

 
After stimulation and activation R-SMADs undergo 
phosphorylation to form complexes with Co-SMADs 
and start regulating transcription of target genes 
[earlier activated by Wnt signaling] [67]. BMP does 
not induce osteoblastic differentiation directly it 
instead activates SMAD which further activates 
Runx2 transcriptional factor; this Runx2 transcription 
further induces osteoblastic differentiation [68-72]. 
 
Other signaling pathways involved are, Hedgehog 
signaling, FGF signaling, Ephrin and Sympathetic 
signaling. 
 
Genetic Regulation: Transcriptional Factors 
Regulating Osteoblastogenesis- 
The transcriptional factors of osteoblastogenesis are a 
range of proteins belonging to the homeobox family, 
which are the Activator Protein [AP] family members 
[73]- 

i. Jun. 
ii. Fos. 

iii.  Fra. 
iv. SMADs. 
v. CCAAT/Enhancer Binding Protein β 

[C/EBPβ]. 
vi. C/EBPd. 
vii. Lymphoid Enhancing Factor. 
viii.  Twist. 

ix. ATF4. 
x. Runx2. 

xi. Osterix. 
From the above mentioned genes Runx2, Osterix and 
ATF4 are master genes involved in 
osteoblastogenesis. These act as “master switches” 
that aid in MSCs commitment to tissue specific cell 
types. One such master switch is the Runx2 
transcriptional factor that plays a central role in 
regulating process of osteoblastogenesis [73]. Runx2 
plays a pivotal role but still requires other 
transcriptional partners that regulate effectiveness of 
Runx2 expression and activity [73].     
 
Runx2 belongs to the Runt related factors family 
encoded by specific unlinked genes having common 
DNA identification pattern TGTGGT and 
heterodimerise with the omnipresent CBF-β for stable 
DNA binding [74, 75]. Additionally Runx2 is also rich 
in residues of glutamine and alanine that activate 
Osteocalcin and Colla-I genes [76, 77]. 
 
Most importantly Runx2 might also act as an inhibitor 
of osteoprogenitor proliferation; therefore, it regulates 
transition from growth to post proliferative stage [78]. 
 
Other genes facilitating Runx2 activity are MSX2 
genes that affect the MSCs commitment to osteoblasts. 
Another gene Bapx-I aids in activation of Runx2 
expression [79-81]. Developmental action of Runx2 is 
regulated by genes that code the helix-loop-helix 
transcription, such genes, Twist-I and Twist-II directly 
code the DNA helix and lead to effective bone 
formation, this phenomenon is yet to be further 
researched [82-84]. However, expression of Runt 
related factors, Cbfa-I, Twist genes and osteoblastic 
markers has recently been demonstrated to occur in 
human osteoblasts that were cultured upon sterile 
Titanium, Steel and Ceramic surfaces [85], implying 
that osseointegration and osteoblastogenesis of peri-
implant site is similar to bone growth at the molecular 
and cellular level. 
 
Tumor suppressor genes such as p53 tumor suppressor 
gene act as a negative regulator of osteoblastogenesis, 
this has been proved in two animal studies. In one 
study bone metabolism and skeletal structures was 
examined in mice without p53 gene and in the other 
study, effects of hyperactive p53 gene was studied in 
mice, both studies came to the conclusion that p53 
suppresses osteoblastogenesis by suppressing Runx2 
or Osterix expression [86-88]. 
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Other three main transcriptional partners of Runx2 that 
positively influence Runx2 activity and osteoblastic 
differentiation are Osterix, ATF4 and SATB2.  
 
Now the differentiated osteoprogenitor cells colonize 
the implant surface and begin secreting a matrix. This 
has been demonstrated to occur within 24 hours of 
implantation in a porcine model [20]. This initial 
matrix secreted by osteoprogenitor cells does not 
contain collagen [24]. This matrix forms the afibrillar 
interfacial zone and has a varying thickness from 0.2-
0.5µm [24]. 
 
Davies et al., first described this afibrillar zone to be 
analogous with the cement line outlining the osteons, 
this is electron dense and consists of osteopontin and 
bone sialoproteins and plasma derived osteonectin and 
α2HS-Glycoprotein [24, 89, 90, 91]. 
 
The non-collagenous proteins, osteopontin and BSP 
have nucleation sites for mineralization; therefore, the 
afibrillar interfacial zone forms a non-collagenous, 
calcified layer on implant surface and a collagenous 
compartment composed of Type-I Collagen beyond 
afibrillar zone. Mineralization of afibrillar interfacial 
zone precedes mineralization of the collagenous 
compartment [24]. During mineralization the 
osteoblast move away from the mineralization front 
however, sometimes few osteoblast fail to escape and 
get enveloped [22]. This leads to development of 
osteocyte within a bone lacuna, resulting in formation 
of immature woven bone, proceeding from implant 
surface to the prepared osteotomy walls. This process 
is known as “Contact Osteogenesis”[26].  
 
Formation of bone also occurs in the opposite 
direction that is from prepared osteotomy walls to the 
implant surface this is termed as “Distant 
Osteogenesis”[26].  
 
During osteotomy preparation, due to thermal necrosis 
and physical injury the osteocytes in the bone will die 
to a depth of 100-500µm, this dead bone is subject to 
osteoclastic activity [24, 92]. Osteoprogenitor cells 
migrate to this surface of bone and form cement like 
non-collagenous layer similar to that on the implant 
surface [22, 93], followed by formation of a collagen 
containing layer by fully differentiated osteoblast. 
Mineralization occurs same as that in contact 
osteogenesis. Thus, it can be stated that bone 
formation occurs in two opposite directions. 
Flourochrome labeling has revealed that bone 
formation via contact osteogenesis progresses at a 
30% faster rate than distant osteogenesis [24, 31, 94]. 
 

As mineralization from distant and contact 
osteogenesis progresses towards each other and meet 
midpoint the osteoblasts involved get trapped in 
lacunae and the mineralizing ends of the contact and 
distant osteogenesis coalesce and unite, this 
phenomena is called as “Osseocalescence”.  
 
Contact osteogenesis, distant osteogenesis and their 
coalescence leads to formation of woven bone in the 
peri-implant space. This provides secondary 
stabilization to the implant. Thus, it can be said that 
there is a changeover from primary stability which 
results from frictional fit between implant and bone to 
secondary stability that results from formation of 
woven bone around the implant [95]. It can also be 
stated that primary stability declines overtime as bone 
which is in direct contact gets resorbed by osteoclastic 
activity.    
 
Secondary stability may be stated to arise from bone 
bonding if the implant surface topography is 3-
dimensionally complex i.e; it has macro, micro and 
nano porosities, this feature of an implant allows for 
interdigitation and incorporation of bone into the 
surface of the implant and allows for successful bone 
bonding, if the implant surface is not complex bone 
bonding does not take place and bone grows as a result 
of distant osteogenesis only [1, 13, 18, 20, 26, 96]. 
 
Remodeling- 
Many consider remodeling of bone to be the last stage 
of peri-implant healing but in fact it occurs throughout 
the healing process, the sequence of remodeling is a 
defined series of events that is - activation of 
osteoclastic cutting cones, resorption of bone by 
osteoclasts, angiogenesis, differentiation of MSCs to 
osteoblasts and bone formation by osteoblasts [97]. 
This has been called as BMU and is believed to be the 
cause of formation of a new osteonal system within the 
existing bone [98]. Remodeling thus first occurs in the 
host bone and then in the woven bone formed in the 
peri-implant space. 
 
During implantation the host bone suffers significant 
micro-damage that may extend 1-2mm into the bone 
[97], this leads to an enhanced remodeling in the host 
bone which may last more than six months, along with 
host bone remodeling there is remodeling of woven 
bone in peri-implant space, and this results in 
formation of mature lamellar bone [98].  
 
Since woven bone is formed more rapidly and consists 
of loosely packed collagen fibers with varying spatial 
arrangement, whereas lamellar bone has organized and 
thicker bundles of collagen fibers, therefore, formation 
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of lamellar bone in peri-implant space is the desired 
end result as its structure makes it mechanically 
stronger [99]. 
 
Peri-implant bone continues to remodel throughout the 
life of an implant. This remodeling may allow for 
increased BIC. Brånemark et al., conducted a study 
where titanium screws were inserted into the rat tibia 
and compared histology with the pullout and torsional 
strength for titanium screws, they found that in the first 
four weeks as the bone quantity increased, the pullout 
strength increased, but increase in torsional strength 
was seen between fourth to sixteenth week period as 
bone remodeling occurred. Thus, it was concluded that 
there was a positive correlation between torsional 
strength BIC and that remodeling improved BIC 
[100]. 
 
In ideal conditions remodeling will always improve 
the BIC, however, it may not happen always, since 
remodeling is greatly influenced by the stresses 
generated in the peri-implant bone.  
 
Julius Wolff recognized this and stated that – “every 
change in the function of the bone is followed by 
certain definite changes in the internal structure and 
external conformation in accordance with 
mathematical laws” [101]. 
 
In healthy bone the BMU activity is balanced that is 
because of normal loading the osteoblastic and 
osteoclastic activity occurs at a normal rate. If there is 
unloading for period of time the osteoclastic activity 
predominates and leads to loss of bone mass [98, 101].  
 
Similarly, the implant placed into the bone might bring 
about changes in stress distribution in the bone as it is 
stiffer than the host bone; this may lead to an 
unbalanced BMU activity and is called as “Stress 
Shielding” [102]. 
 

CONCLUSION 
 
For a basic understanding of peri-implant healing one 
needs to know about the dental implant, the 
biomaterial, the topography and the complex 3-
dimensional roughness imparted via various surface 
treatments.  
 
Out of all the requisites, surface roughness is the most 
important factor that gives an implant the ability to 
osseointegrate. It can be argued that surface roughness 
makes an implant osseoinductive and 
osseoconductive. This can be described in the way the 
implant surface allows protein adsorption that induces 

platelet activation which in turn following a cascade of 
events allows for bone formation, this can be described 
to be an osseoinductive behavior and the 
interdigitation of bone into the roughness of the 
implant to be osseoconductive behavior. 
 
Primary stability of an implant is also an important 
factor that cannot be ignored. The frictional fit of an 
implant with the surrounding host bone allows for the 
various factors to remain in a constant touch with the 
implant surface which allows for undisturbed healing. 
Although primary stability of an implant is eventually 
lost and is replaced by secondary stability it is still 
important as it basically allows for most of the healing 
to occur. 
 
Signaling and transcriptional control of 
osteoblastogenesis also seems to be an interesting 
topic for research; several studies have shown 
involvement of various signaling pathways and genes 
in healing of fractures or development of bones. It is 
important to note that all the several pathways and 
genes involved in the process work together at the 
same time to get the desired result and malfunction of 
even a single component can have drastic effects. It 
can be argued that since the quantity and quality of 
bone formation is majorly genetically controlled, 
therefore, osseointegration also might depend upon the 
genetic makeup of an individual. 
 
In conclusion, the cascade of peri-implant healing till 
date has been questionable yet a fascinating subject for 
researchers around the world, with advancement in 
genetics, more researchers are trying to unmask its 
genomic basis and are trying to utilize their knowledge 
to manufacture new surface treatments that can allow 
for faster biological response and rapid 
osseointegration. 
 
It is fair to state that several studies in the past decade 
have almost shown similar results but more clinical 
and research data is required to unfold this enigma of 
osseointegration. 
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