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ABSTRACT
Statement of problem: With an increasing number of all ceramic materials available for clinical use, an overview of 
the scientific literature on the adhesion methods for different all ceramic materials and their potential influence is 
indicated. 

Aim: This study proposed the development of a protocol for bonding of all ceramic prostheses using various adhesives/
cements for the improvement of the longevity of restorations.

Materials and methods: A decision tree protocol was developed with criteria (i) Type of all ceramic material: Alumina, 
lithium disilicate and zirconia. (ii) Type of surface treatment, if any required (iii) Type of adhesive/cement/ luting 
agent used for long term success. (iv) Survival rates and complication rates seen with different bonding protocols. A 
decision tree protocol was set up with the current available literature. 

Results: According to the literature, multiple all-ceramic materials and systems are currently available for clinical 
use, and there is no single universal material or system that can be used in all clinical situations. The successful 
application is dependent upon the clinician to match the materials, manufacturing techniques, and cementation or 
bonding procedures, with the individual clinical situation.

Conclusion: There are various methods that can be used for treatment of ceramic bonding. Further continued 
investigations will be needed for the appropriate protocol updates.
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INTRODUCTION 

Following the introduction of the first Feld spathic 
porcelain crown by Land [1], the interest and demand 
for non-metallic and biocompatible restorative materials 
increased for dentists and patients. Recently, all-ceramic 
restorations have become popular, mainly because of 
esthetics and good mechanical properties. Bonding is 
one the most important factors that influences the long 
term success of any of these all ceramic crowns. Various 
surface treatment protocols have been described 
previously due to lack of susceptibility to etching 

and this makes it impossible to realize the adhesive 
procedures. Realizing safe and standardized adhesive 
cementation protocols of these crowns is necessary 
in order to adequately complete the conservative/
prosthetic treatment plan, especially when it is necessary 
to improve the mechanical characteristics of the tooth-
prosthesis complex.

Resin bonding has been advised for low and moderate 
strength ceramics that are not supported by a core, 
especially if the preparation is minimally invasive or is 
lacking retention form, thus bonding of lithium disilicate 
and zirconia complete-coverage restorations has always 
been a controversial topic [1–4]. Most of the existing 
knowledge in this regard is based on in vitro studies that 
have shown that adhesive resin cementation increased 
the retention of lithium disilicate crowns [5], improved 
the fracture strength and reduced the marginal leakage 
of alumina crowns [6], improved the fracture resistance 
of lithium disilicate crowns [7], and increased the fatigue 
resistance of zirconia crowns [8]. In contrast, another 
study showed that the retention of zirconia crowns did not 
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differ between a resin- modified glass Ionomer cement 
and resin cements [9]. Also, other studies reported no 
difference in the fracture resistance of zirconia fixed 
partial dentures and crowns [9–12], retention of zirconia 
crowns [13], and fracture resistance of pressed or milled 
lithium disilicate crowns after adhesive or conventional 
cementation [14,15]. Two clinical studies based on 
the same cohorts of participants compared the failure 
rates and complications of short-span lithium disilicate 
fixed partial dentures when conventional or adhesive 
cementation was used and reported no difference after 
8 and 10 years.

Given the increase in popularity of all-ceramic 
restorations/ prostheses mainly, lithium disilicate and 
zirconia restorations, a review and synthesis of current 
data related to the clinical outcomes of these restoration 
materials when treated using different surface treatment 
protocols and cemented with resin cements as opposed 
to conventional cements is necessary. The purpose 
of this study was to analyse clinical performance of 
tooth-supported all ceramic crowns and to describe the 
complications/failure characteristics when different 
surface treatment protocols were used and when 
adhesive or conventional cementation is used to better 
guide the practitioner with a clinical workflow that can 
be used in daily practice.

OBJECTIVES

The aim of this paper was to present a detailed workflow 
for restoration with different all ceramic materials, 
focused on different adhesives/ cements, various 
surface treatments if needed and overall survival and 
complications through a systematic decision tree.

Glass ceramics
The most appropriate are luting composites [16,17] 
which not only provide the strongest bond but can 
increase the fracture resistance of the restored tooth 
and indirect ceramic restoration as well [16,18–20]. 
However, surface treatment is necessary to ensure a 
long term bond between ceramic material and the tooth 
structure. The mechanical alteration can be achieved 
by surface acid etching, airborne particle abrasion or 
grinding with diamond rotary instruments [21–23]. 
The chemical treatment is performed using universal 
or ceramic primers, i.e. salinization [24, 25], while the 
method used for chemo-mechanical alteration of the 
bonding surface is tribochemical silica-coating, i.e. 
silicatization [26,27]. Numerous alternative treatments 
are proposed for treatment of restorations made up 
from zirconia such as: selective infiltration etching (SIE) 
[28,29] followed by application of various silane-based 
zirconia primers [30,31], gas - phase chloro-silane pre-
treatment [32], gas - plasma, argon - ion bombardment, 
alumina or zirconia sandblasting [33], non - thermal 
plasma treatment [33,34], nano -structure alumina 
coating [35] or aluminium nitride coating by reactive 
magnetron sputtering [36].

Which surface conditioning method will be selected 
depends on the chemical composition of the ceramic 
restoration [36–38]. Ceramics, the matrix of which 
is based on silicon dioxide ("conventional" or glass-
ceramics) belong to the group in which acid etching is 
the recommended surface treatment [38]. These include 
feldspar-based, leucite-reinforced, lithium disilicate [38] 
and zirconia-reinforced lithium silicate ceramics [38] as 
well as fluorapatite ceramics. Airborne particle abrasion 
(sandblasting) can be used for surface treatment of 
all types of ceramics [21,23]. Universal or ceramic 
primers having reactive radicals in their molecules 
change the chemical composition of the ceramic surface, 
thus making it much more reactive for binding with 
composite cement [38,21]. Tribochemical silica - coating 
is primarily used for the treatment of aluminium trioxide 
and zirconium dioxide ceramics; acid etching will not 
have any impact on their surface morphology, as these 
materials don’t contain silicon in their composition [23].

Lithium disilicate ceramics
Surface treatment
According to Kim et al. the effect of the surface treatment 
primarily depends on the chemical composition of 
the ceramic. Hydrofluoric acid etching is the most 
appropriate treatment of a lithium disilicate ceramic. 
Exposure of crystals is observed after etching of the 
lithium disilicate ceramic. It may be noted that all glassy 
ceramics have almost identical content of silicon dioxide-
about 60%, while the presence of aluminium oxide is 
similar between feldspar-based and leucite- reinforced 
ceramics - about 20%, and between lithium disilicate 
and zirconia-reinforced lithium silicate - about 4%. 
However, the specific internal structure and presence 
of other oxides influence the effect of HF acid etching. 
According to Bajraktarova-Valjakova et al. numerous 
micropores and channels of different sizes with irregular 
ceramic particles can be observed on the surface of VITA 
Mark II; the etching surface of IPS Empress CAD gets 
honeycomb-like appearance, while numerous elongated 
or bean-like [23,39,40] crystals have been extruded as 
a result of silica - matrix dissolving after etching of IPS 
e.max CAD and Celtra Duo respectively. HF etching of 
VITA Enamic causes dissolving of the superficial ceramic 
network, so that the acrylic polymer network becomes 
visible with scattered irregular ceramic particles. 

In conclusion, there are various methods that can be 
used for the treatment of ceramic bonding surfaces when 
adhesive luting is recommended. Undoubtedly, the most 
appropriate treatment method for silica-based ceramics 
is acid etching.

Bonding
In a systematic review by Georgios Maroulakos et al. 
[41], adhesive resin cementation was reported for 1957 
lithium disilicate crowns in 10 of the included articles 
[41-63]. The range of crown survival rate was 83.5% 
to 100%, whereas the complication-free rate ranged 
from 71.0% to 96.7%. Conventional cementation was 
reported for 163 lithium disilicate crowns in 2 of the 
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included articles [57,64]. Crown survival was reported 
by one article as 98.5%,57 whereas another article re-
ported a 87.1% complication-free rate. Gehrt64 reported 
82.0% complication-free rates for adhesively cemented 
lithium disilicate crowns and 87.1% for conventionally 
cemented ones (Figure 1) [42].

In ceram glass infiltrated alumina ceramic
Surface treatment
Bonding to In-Ceram glass infiltrated alumina ceramic 
requires techniques that are different from techniques 
that can be used for conventional silica-based dental 
ceramics. A long-term durable bond to In-Ceram alumina 
ceramic can be achieved with either the combination of 
tribochemical silica coating and conventional BIS-GMA 
composite resin or with the combination of sandblasting 
and composite resin modified with a phosphate monomer 
[51]. The bonded surface can be tribochemically silica 
coated and silanted (Rocatec), followed by etching of 
enamel for 30s with 36% phosphoric acid.

Bonding
The restoration can then be inserted using phosphate 
monomer containing luting resin (eg. Panavia) [52].

Zirconia
Surface treatment
Tribochemical silica coating has a positive impact 
on the bond of luting composite to aluminium oxide 
and zirconium oxide ceramics [39]. Hydrofluoric acid 
etching has no effect on the so-called polycrystalline 
ceramics; such are aluminium trioxide [53,54] and 
zirconium dioxide partially stabilized with yttrium oxide 

[55]. Increase in mechanical strength by increasing the 
number of crystals and reducing the content of glass 
(silicon dioxide), leads to the creation of acid - resistant 
ceramics (non-etchable). Treatment with any acid will 
not induce any satisfactory (micro retentive) changes to 
the surface micro - morphology to ensure proper bonding 
of composite cement [56,57–59]. Surface treatment 
of such ceramic restorations is performed using other 
methods: tribochemical silica coating [26,29,60], 
chemical treatment with methacryloyloxydecyl 
dihydrogen phosphate (MDP) - containing primers [60], 
or alternative methods. Tribochemical coating seems 
to be less effective for zirconia ceramics than for glass-
infiltrated ceramics [55,61]. Y-TZP ceramics present 
greater hardness compared with systems with a glassy 
structure, which prevents the impregnation of silica onto 
the surface [62]. For this reason, silane agents do not 
bond adequately to zirconia ceramics [55].

Air abrasion with aluminium oxide particles is routinely 
performed to remove layers of contaminants, thus 
increasing micromechanical retention between the resin 
cement and the restoration [63,64]. Usually, air abrasion 
units use aluminium oxide particles with sizes ranging 
from 25 μm to 250 μm. These particles may or may not be 
silica-coated (tribochemical treatment) [65]. The effect 
of air abrasion on the mechanical properties of zirconia 
has been repeatedly discussed in the literature, and 
both positive and negative results have been described 
[66,67].

Some authors have stated that air abrasion increases 
the flexural resistance of zirconia ceramics, because 
it induces T-M phase transformations, creating 

Figure 1: Flowchart describing the workflow for surface treatment of lithium disilicate prostheses.

Figure 2: Flowchart describing the workflow for surface treatment of zirconia reinforced lithium silicate.
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compressive layers on the surface [65]. Apparently, the 
depth of the surface flaws induced by air abrasion do not 
exceed the thickness of the compressive layers, justifying 
the improved properties of air-abraded surfaces [65,67]. 
When the effects of air abrasion and milling with fine-
grained dia- mond instruments (20 μm -40 μm) were 
compared with the use of coarse diamond burs (125 
μm -150 μm), it was observed that less severe protocols 
reduced surface roughness and provided the formation 
of compressive layers on the surface. Conversely, coarse 
diamond burs reduced the flexural strength and reliability 
of Y-TZP ceramics [65]. In a different study, air abrasion 
and coarse diamond burs also presented opposite effects 
on the flexural resistance of a zirconia ceramic [66]. The 
authors of that study added that, during milling with the 
diamond bur, a vast amount of material was removed 
and sparks were commonly observed despite the use 
of constant water spray, indicating that both stress and 
tem- premature were high during the operation.

Other techniques for the superficial treatment of 
zirconia ceramics have been described; these are plasma 
spraying and fusing glass pearls to the zirconia surface 
[66,68]. Both treatments improved the bond strength 
of resin cements to the surface. Nevertheless, they were 
not compared with conventional methods of surface 
treatments for Y-TZP ceramics, such as air abrasion and 
tribochemical coating [66,68,69].

Bonding
Bonding agents include zinc phosphate cements, 
conventional and resin-modified glass Ionomer cements, 
resin cements and self-adhesive resin cements [70]. 
However, resin cements possess some advantages 
compared with the other classes of materials, since they 
have lower solubility and better esthetic characteristics 
[17,71,72]. In addition, the adhesive bond between 
the resin cement and ceramic might increase the 
restoration’s resistance during occlusal loads [1,39-40].

There is some evidence that demonstrates that a 
better bond to Y-TZP ceramics is obtained using resin 

cements with phosphate ester monomers, such as the 
MDP monomer18. The phosphate ester group might 
chemically bond to metal oxides, such as zirconium 
dioxide [63,73] Wolfart and others evaluated the 
durability of the bond with two resin cements (MDP-
based and Bis-GMA-based) to a zirconia ceramic. The 
MDP-based material presented higher bond strength 
to zirconia surfaces air abraded with alumina particles 
and this bond survived 150 days of water storage. Other 
studies also stated that resin cements with phosphate 
ester groups increase the bond strength of air abraded 
and tribochemical-coated surfaces (Figure 2 and Figure 
3) [55].

CONCLUSION

The role of bonding efficacy plays a major role in the 
survival of any all-ceramic prosthesis. There are various 
methods that can be used for treatment of ceramic 
bonding. Based on the available evidence and within the 
limitations of this review, following conclusions were 
drawn:

 9 To bond zirconia, airborne particle abrasion with 
50 micron aluminum oxide at 0.10-0.25MPa 
in combination with a MDP primer containing 
adhesive resin is recommended, following rubber 
dam isolation.

 9 Acid etching is the most appropriate treatment 
method for silica-based ceramics.

 9 Tribochemical silica coating and conventional BIS-
GMA resin or combination of sandblasting and MDP 
containing resin appeared suitable for bonding of in 
Ceram alumina.
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