
223Journal of Research in Medical and Dental Science | Vol. 6 | Issue 5 | October 2018 

Journal of Research in Medical and Dental Science 
2018, Volume 6, Issue 5, Page No: 223-237
Copyright CC BY-NC 4.0 
Available Online at: www.jrmds.in  
eISSN No. 2347-2367: pISSN No. 2347-2545

Corresponding author: Menizibeya O Welcome 
e-mail: welcome.menizibeya@nileuniversity.edu.ng
Received: 03/09/2018
Accepted: 28/09/2018

INTRODUCTION

Glucose is the main energy substrate required for brain 
functioning [1,2]. Of the ~160 g of glucose required by 
the body per day, about 120 g–130 g per day is used 
by the brain at resting physiological state. Upon brain 
activation, this quantity increases up to about 140 g–150 
g per day. The cerebral glucose level is maintained 
within a narrow range, and it is about 10%–30% of the 
blood glucose concentration. However, glucose level in 
different regions of the brain differ substantially, and may 
range from 1.4 mM  to 2 .5 mM, depending on a couple 
of factors including physiological state (e.g. fasting, fed 
state), energy reserve, duration of mental activity, some 
diseases, drug use and misuse [1,2]. Furthermore, brain 

regions poor in blood brain barrier such as the median 
eminence may have a substantially higher glucose level 
compared to other regions of the brain [3–6]. 

Other substrates such as ketone bodies, fatty acids, and 
some amino acids can serve as energy substrates for brain 
activities especially during prolonged fasting. However, 
in the absence of glucose, other energy substrates cannot 
maintain normal functioning of the brain [1,2,7,8]. 
Thus, prolonged fasting results to hypoglycemia, which 
may, in turn lead to neurological symptoms that may 
subsequently progress to loss of consciousness, coma, 
and eventually, death, if adequate measures are not taken 
to avert the decreasing blood glucose [9,10]. Significant 
decrease in brain functions following reduction in blood 
glucose level [8], accompanied by a corresponding 
decrease in cerebral glucose level has been reported 
by different laboratories around the world [11–15]. 
However, excessive increase in blood glucose level is 
associated with disease states such as diabetes mellitus 
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and prediabetes. Chronic hyperglycemia observed 
in diabetes mellitus can predispose the individual 
to neurological and cardiovascular complications 
such as neuropathy, nephropathy, and stroke [10]. 
Accumulating data indicate that prediabetic glycemic 
level is also a potential risk factor for neurological and 
especially cardiovascular diseases [16–18]. Thus both 
hypoglycemic and hyperglycemic states pose serious 
health consequences for the individual. However, under 
normal physiological state, both chronic hypoglycemia 
and hyperglycemia are prevented through a series 
of physiologic response, involving timely sensing of 
decreasing or increasing glucose level with secretion of 
corresponding hormones [19–21]. Insulin is the major 
hormone that counteracts increasing blood sugar above 
the threshold, whereas counter-regulatory hormones 
such as glucagon, adrenaline, cortisol, and growth 
hormone serve to return decreasing blood glucose 
level to normal [22,23]. It is believed that the counter-
regulatory responses to decreasing glycemic level are 
mainly controlled by the brain and involve coordinated 
activities of neurons and astrocytes, as well as peripheral 
organs such as pancreas, liver, muscle, carotid bodies, 
adrenal glands, small intestines, and adipose tissue 
[24–26]. Indeed neurons have been shown to control 
response of peripheral organs to changes in blood glucose 
level [27,28]. Consequently, malfunctions of cerebral 
mechanisms that control glycemic levels within normal 
range can potentially lead to disorders in regulation of 
blood and cerebral glucose levels [20,21]. Apart from 
diabetes mellitus and prediabetes, disorders in brain 
glucose metabolism have been reported in obesity, 
multiple sclerosis, Alzheimer’s, Parkinson, Huntington 
diseases [29–33], and more recently, in schizophrenia 
[34]. It should be mentioned that these diseases 
constitute a significant portion of the global burden 
of diseases with immense economic consequences 
on sufferers, families, caregivers, and public health 
[35–39]. Though new evidences [40,41] indicate that 
the disorders in brain glucose metabolism may involve 
defects in specific receptors, in particular, GLUT2 and 
sweet taste receptors that control glucose transport 
and sensing in the brainstem and hypothalamus, the 
mechanisms are yet to be completely understood. 
It is, however, possible that brain glucose sensing is 
cooperatively linked to cellular uptake of this energy 
substrate. Thus understanding the precise mechanisms 
of brain glucose metabolism is essential in addressing 
the gaps in the literature that may lead to new frontiers 
in treatment of diseases, involving dysfunctions in brain 
glucose metabolism. 

Cerebral glucose metabolism has been traditionally 
explained with hypothesis and models. The most widely 
accepted model of brain glucose metabolism is the 
astrocyte-neuron lactate shuttle (ANLS) hypothesis [42]. 
The hypothesis posits that cerebral glucose metabolism is 
initiated by glutamate activation of astrocyte membrane 
transporters or receptors, released from the presynaptic 
terminal of neuron (Figure 1). Glutamate transport into 

astrocytes stimulates synthesis of astrocyte-derived 
lactate via glycolysis (Figure 1). This lactate diffuses 
out via the astrocyte monocarboxylate transporter 
types 1 and 4 (MCT-1 and MCT-4), and translocates into 
neurons via MCT2. In neurons, lactate undergoes further 
metabolic reactions in the tricarboxylic acid (TCA) cycle 
to produce more ATP and other substances required for 
neuronal functioning [43,44].

In Figure 1, Glucose is transported into astrocytes via 
GLUT1 glucose transporter of the blood brain barrier. 
In astrocytes, glucose is either stored as glycogen or 
under the influence of neutrally released glutamate 
(Glu), channeled to glycolytic pathway, where for each 
molecule of glucose two NADH and four ATP and two 
lactate molecules are produced for NADH or two ATP 
molecules consumed in the process [45–48]. (The Glu 
is transported to astrocyte where it is converted to Gln 
and channeled back to neuron. Details on glutamate-
glutamine cycling are presented in Figure 2). The 
glycogen depot is believed to be a temporary store 
that power astrocyte energy needs, especially during 
cortical stimulation [49, 50]. Lactate is released into the 
extracellular space via proton coupled transporter of 
lactate, ketone bodies and pyruvate–monocarboxylate 
transporters (MCTs, MCT1 and MCT4). The astrocyte-
derived lactate diffuses into neurons via MCT2. However, 
lactate can be transported from the blood into neurons 
or astrocytes via MCT1, which is expressed in the 
cerebral endothelium [45,51]. In both neurons and 
astrocytes, depending on the rate of energy dissipation, 
lactate can be converted to pyruvate and back by lactate 
dehydrogenase type 1 (LDH-1, also known as LDHB 
or LDH-H) and type 5 (LDH-5, also known as LDHA or 
LDHM) respectively [52-55]. Pyruvate is channeled for 
mitochondrial TCA and oxidative phosphorylation in 
both neurons and astrocytes through the activities of 
pyruvate dehydrogenase [55].

Recent evidences have revealed several shortcomings 
of the ANLS hypothesis [19,56]. Despite modifications 
of this hypothesis [30,50,57], proponents still believe 
that the hypothesis addresses key aspects of cerebral 
glucose metabolism [58]. However, recent reports [59-
64] indicate that the ANLS hypothesis requires revision 
due to its inability to account for recent findings, 
suggesting that neuronal function remains unaltered in 
the absence of astrocyte-derived lactate. Surprisingly, 
however, lactate appears to be an integral metabolite and 
substrate for memory and cognitive functions [47,65-
67], and thus, holds promise for treatment of some brain 
diseases including mental and substance disorders [68-
72]. Though the chief source has remained elusive for 
several decades, cerebral lactate is produced by both 
astrocytes and neurons under physiological conditions 
[73]. In aerobic conditions where cerebral lactate is 
readily converted to pyruvate for mitochondrial TCA 
cycle and oxidative phosphorylation, the level of cerebral 
lactate is maintained at physiological range (0.5–1 
mmol/l) [74]. Despite its relatively small mass (2% of 
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Figure 1: A schematic representation showing the major dogma of the astrocyte-neuron lactate shuttle (ANLS) hypothesis 

Figure 2: Glutamate-glutamine cycling is coupled to sodium homeostasis and metabolism
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typical human body mass), human brain, accounting 
for 20%–25% of the total body glucose consumption 
rate (~5.6 mg glucose per 100 g human brain tissue per 
minute) [73,75], requires 20% of body oxygen utilization 
(i.e. 3.5 ml of O2 per 100 g of brain tissue or ∼49 ml O2 
per minute at physiological state [76]. So, in anaerobic 
conditions, there is increased production of lactate, 
which will be ultimately converted to pyruvate for 
further metabolic reactions that will lead to production 
of more ATP and other molecules required for astrocyte 
and neuronal functions [77]. Though excessive increase 
in lactate resulting from neuropathologies (e.g. cerebral 
injury, hypoxia, cerebral ischemia, neurodegenerative 
diseases, cerebral aging, and shock) has been shown 
to be detrimental to brain tissue, the cellular roles 
of different levels of increase in cerebral lactate on 
neuronal functions have not been fully unraveled [74,77-
80]. For instance, in cerebral ischemia, oxygen supply to 
brain tissue substantially reduces within a few seconds, 
ATP stores become depleted within a few minutes, 
so that the brain resorts to anaerobic metabolism for 
its primary source of energy molecules [81]. In such 
neuropathophysiological conditions, which are often 
characterized by failure of oxidative mechanisms and 
impaired lactate clearance, cerebral lactate concentration 
can exceed 4–5 mmol/l [74,82]. It should be mentioned 
that though high lactate concentration is seen both in 
neuropathologies and high intensity exercise, cerebral 
lactate in the latter [74,79,80] is readily removed through 
MCT1 [74]. In contrast, neuropathological elevation of 
cerebral lactate is associated with impaired glucose or 
monocarboxylate transporters [74]. For instance, LDH-
5 dysfunction has been implicated in certain cancers, 
in which lactate is produced at a high rate (Warburg 
effect) [83,84]. The Warburg effect is believed to play 
a role in pathogenesis of neurodegenerative diseases 
such as Alzheimer’s disease [85]. So, in Alzheimer’s 
disease brain, metabolism is reduced especially in 
hippocampus by about 20%–25% compared to healthy 
adults [86]. Indeed several researchers have shown 
8%–50% decrease in glucose metabolic rate in mild 
cognitive impairment and neurodegenerative diseases 
[86]. Based on these data, some researchers have 
successfully shown in animal models that LDH inhibition 
(e.g. by stiripentol) suppressed seizures in epilepsy [53]. 
The recent developments about lactate as a signaling 
molecule that may function as a neuro-transmitter or 
-hormone indicate that lactate may be a key molecule for 
memory formation and neuroprotection [67]. Lactate 
readily binds to GPR81 (hydroxycarboxylic receptor 1, 
HCA1), but the pathways are yet to be delineated [87]. 
Administration of supraphysiologic concentration of 
L-lactate has been found to alleviate symptoms of some 
brain diseases [72,87].

Indeed disorders in both astrocyte and neuron 
metabolism have been reported in several diseases 
involving cerebral glucose metabolic dysregulation 
including obesity, diabetes mellitus, multiple sclerosis, 
Alzheimer’s, and Parkinson diseases, suggesting that 

these cells play a synergic role in glucose metabolism 
[88-93]. Unfortunately, however, the cellular and 
molecular nexus linking astrocyte-neuron metabolism is 
not completely understood.

In this review, data on opposing views of brain glucose 
metabolism are reconciled. It is suggested that while 
neuron may not depend on astrocyte-derived lactate for 
energy, neuron-derived lactate is coupled to astrocyte 
lactate production via calcium waves and sodium 
current, mediated by the tripartite synapse, an anatomo-
physiologic spatiotemporal integration site, formed by 
the physical proximity of the membranes of presynaptic 
neuron, postsynaptic neuron, and astrocyte. The 
therapeutic implication of this view of astrocyte-neuron 
glucose metabolism is also discussed.

Emergence of models of cerebral glucose 
metabolism

The fact that glucose is an integral metabolic substrate 
for brain functioning has been known for almost a 
century. However, the mechanisms of glucose uptake, 
transport and metabolism by brain cells have remained 
an unending debate. The mechanisms of regulation of 
brain glucose metabolism remained a speculation until 
the early 1990s when different laboratories around the 
world began reporting the chief role of lactate derived 
from astrocyte glycolysis in the production of energy for 
neuronal functions [42,94-98]. This led to the formulation 
of the first hypothesis about brain glucose metabolism 
(ANLS), put forward by Pellerin and Magistretti (vide 
supra) [42]. Around the same time, Ferrer et al. [99], 
Leloup et al. [100], Jetton et al. [101], and Ozcan et al. 
[102] reported the discovery of some glucose sensors 
in neurons and astrocytes. The identification of GLUT2 
[100], K-ATP [103,101] and SGLT3 [104,105] as 
members of the glucose sensors located on the plasma 
membrane of neurons and astrocytes in hypothalamus, 
brainstem [59-64], amygdala and nucleus accumbens 
[5] was integral in defining the glucosensor model of 
cerebral glucose metabolism. The recent identification of 
sweet taste receptors as astrocyte and neuronal glucose 
sensors in hypothalamus and brainstem, controlling 
cerebral glucose metabolism has solidified the 
glucosensor model of cerebral glucose metabolism [59-
64,106]. However, for reasons not clearly understood, 
the glucosensor model did not attract much attention as 
did the ANLS hypothesis [42,58,107]. It is possible that 
the astrocentric view of the ANLS model and neuron-
astrocyte cooperativity in metabolic/transmitter cycling 
could have been responsible. Other possible reasons are 
discussed below.

Cerebral lactate shuttle: Dissecting the “window” of 
bidirectional metabolic flow

It was previously thought, on the basis of the ANLS 
hypothesis, that astrocytes were mainly responsible 
for trophic functions in the brain, feeding neurons with 
metabolites [108,109]. However, evidences have shown 
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that this is unlikely (vide supra). Thus neurons have their 
metabolic machinery for active production of lactate 
as well as its metabolic reactions that culminate in 
production of more ATP and other substances to power 
neuronal activities. In either scenario, glucose is actively 
transported from the bloodstream via the blood brain 
barrier to the brain cells, where they undergo glycolysis 
and oxidative phosphorylation to generate 13% and 
87% ATP respectively [1,2,98,110]. Thus, both neurons 
and astrocytes can potentially generate lactate, which 
can enter the TCA cycle for further metabolic reactions.

A possible reason for the dominating view of the ANLS 
hypothesis over the glucosensor model of cerebral 
glucose metabolism may be due to the peculiar 
localization of astrocytes to the blood brain barrier, hence, 
it was thought that these cells are mainly responsible 
for feeding neurons with metabolic substrates (lactate). 
Truly, this view was strongly supported by morphological 
data and expression of isozymes of glucose metabolism. 
Morphologically, 80% of the astrocyte surface area 
accounts for processes such as lamellipodia and 
filopodia, which were thought, may not accommodate 
considerable quantity of mitochondria [49]. However, 
a recent report showed that mitochondria in astrocytes 
are usually located adjacent to the plasma membrane 
of the lamellipodia and filopodia. Furthermore, similar 
to neurons, about 16%–22% of the total area of these 
astrocyte processes is occupied by mitochondria [111]. 
Again, astrocytes are well suited for aerobic glycolysis 
due to expression of fructose-2,6-bisphosphatase, 
lactate dehydrogenase type 5 and pyruvate kinase M2 
isoform. Nevertheless, like astrocytes, neurons express 
glucokinase and can also convert lactate to pyruvate 
for mitochondrial metabolism due to the expression of 
lactate dehydrogenase type 1 [46,47,112,113].

In a recent report, it was shown that neurons have higher 
expression of glucokinase than astrocytes, suggesting 
that glycolysis in the former may be more active than the 
latter [46]. This indicates that indeed, there is possibility 
of flow of lactate from neurons to glial cells, since neurons 
will have a higher production of lactate [114]. This view 
completely negates ones of the major tenets of ANLS 
hypothesis, which posits that astrocyte-derived lactate, 
is transported to neurons [42,58]. Again, on the basis 
of previous data, it was believed that only astrocytes 
express glycogen synthase and glycogen phosphorylase 
[115], however, recent reports indicate that neurons also 
express these enzymes [116,117]. Therefore, similar 
to astrocytes, neurons can carry out a wide range of 
metabolic activities independent on astrocyte shuttling 
of lactate. In this paper, it is suggested that there is no 
rigid compartmentalization of the metabolic machinery 
of astrocytes and neurons in a living physiological 
system. Thus, rather than functioning in isolation, 
astrocyte metabolic activities are coupled to neuronal 
metabolism via calcium waves and sodium currents. 
These ions represent major ions that control cellular 
activities [26, 118-121]. Cooperativity between these 

cells was documented by our group in a previous work 
[1] and also reported elsewhere [121-126]. Arguably, 
though, glutamate-glutamine cycling is a crucial example 
of metabolic cooperativity between astrocytes and 
neurons (vide infra).

Do neurons really depend on astrocyte-derived 
lactate for energy? Putting an end to the unending 
ANLS debate

One of the major contending issues about the ANLS 
hypothesis is whether or not neuron depends on lactate 
derived from astrocyte glycolysis for energy [48]. Based 
on accumulating research evidences, indicating that 
neurons express glucose-metabolizing enzymes, similar 
to or even higher in activity compared to those found 
in astrocytes, opponents of the ANLS hypothesis have 
argued that neurons can produce considerable amount 
of lactate required to power their energy needs at rest 
and especially during brain activation without any need 
for astrocyte-derived lactate [46, 114]. Lundgaard et al. 
have showed that glucose is preferentially taken up by 
neurons in activated mental state [46]. Indeed Lundgaard 
et al. also reported high expression of hexokinase (the 
glucose cleaving enzyme of the initial step of glycolysis) 
in neurons than in astrocytes [46]. Similar findings 
have been reported by Díaz-García et al. Interestingly, 
Díaz-García et al. revealed that neuronal metabolism 
during brain activation does not depend on astrocyte-
derived lactate; rather it reflects increased direct 
glucose consumption by neurons [127]. Furthermore, 
Díaz-García et al. reported that neuronal metabolism 
is independent on glutamate-glutamine cycling, 
suggesting that apart from sodium currents, triggered 
by neurally released glutamate, other mechanisms may 
be responsible for astrocyte-neuron glucose metabolic 
integration or cooperativity [127]. In this paper, it is 
suggested that calcium homeostasis is integral to the 
metabolic cooperativity between astrocyte and neuron 
(vide infra). These results strongly contradict the ANLS, 
thus the need for further modification or revision.

It should be mentioned that the peculiarities of the ANLS 
hypothesis in various brain regions may be responsible 
for the inconsistent data reported by different authors 
[128,129]. Due to large variance in level of activity, 
which also, can trigger neuronal metabolism, according 
to emerging report [130], neurons of the neocortex 
may actively use up glucose and lactate to power their 
functional requirements–in such a situation, astrocyte 
may play a little or no role in shunting of lactate to 
neurons. In dorsal hippocampus and amygdala, ANLS 
appears to contribute to memory consolidation and 
fear conditioning [128]. However, both direct neuronal 
glucose and astrocyte shuttling of lactate contribute to 
cerebral metabolism [128]. The recent result reported 
by Drulis-Fajdasz et al. showed that in hippocampus 
of young animals, ANLS is very active, whereas aging 
hippocampal neurons of aged animals are mostly 
independent on astrocyte derived lactate [129]. In a 
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recent paper, the originators of the ANLS hypothesis 
argued that the model does not exclude direct neuronal 
uptake of glucose [131], which suggests that neurons may 
not require astrocyte derived lactate since neurons can 
directly transport glucose for their energy requirements. 
The recent report by Dienel further showed that neurons 
may not depend on astrocyte-derived lactate for energy 
[56]. Dienel also revealed that astrocyte-neuron lactate 
shuttling does not significantly contribute to brain 
energetics, especially during mental activation [56]. 
Similar results were reported by Patel et al. [132], and 
also documented in other findings [133]. Patel et al. 
showed that pyruvate derived from neuronal glucose is 
responsible for feeding neurons with their energy needs 
during brain activation [132]. However, possibility for 
lactate shuttling from astrocyte to neuron cannot be 
completely excluded. Based on a relatively recent model, 
Mangia et al. suggested that such shuttling can occur 
provided that neurons remain inactive and astrocyte 
glucose transport capacity is increased by 12 times [114]. 
Unfortunately, however, in practice, neither condition 
has been reported [114]. In fact Dienel et al. even 
showed that upon physiological activation, breakdown 
products of glycogen stores in astrocytes are used up by 
the astrocytes themselves, not neurons [30]. It should 
be mentioned that in normal physiological condition  
in vivo, cooperativity and integration of information from 
multiple cells determine continuity of life processes. 
Indeed dysfunctions of metabolic machinery of both 
astrocytes and neurons are implicated in diseases 
involving brain metabolic disorders [58], suggesting that 
these cells play a synergic role in brain metabolism.

Rather than astrocytes feeding neurons with energy 
substrates, the nature of metabolic coupling between 
these brain cells may be synergic and that both glycolysis 
and oxidative phosphorylation to a considerable 
extent occur in neurons and astrocytes [134,135]. So, 
while lactate shuttling may occur between neurons 
and astrocytes, the basis for such a phenomenon is to 
maintain energy homeostasis, required for sustained 
activity of the brain especially during activation [135].

Tripartite synapse: Spatiotemporal integration site 
for astrocyte-neuron metabolic coupling- The role of 
calcium waves and sodium currents

The tripartite synapse refers to the anatomo-physiologic 
spatiotemporal integration site, formed by the physical 
proximity of the membranes of presynaptic neuron, 
postsynaptic neuron, and astrocyte [136,137]. The term 
“tripartite synapse” was introduced in 1994 by Parpura 
et al. [138] to describe the unique roles of astrocytes in 
integration of information by direct communication with 
both pre- and post-synaptic elements via neuro- and glio-
transmission. Thus these star-shaped structures were 
more than neuronal support cells that played active roles 
in brain functioning [137]. The functional implication of 
this morphological architecture of the astrocyte-neuron 
junction was not realized until the twenty-first century 

when a number of authors reported unique roles of 
this anatomo-physiologic spatiotemporal integration 
site in modulation of a couple of brain processes in 
health and disease [139-143]. The tripartite synapse is 
now believed to play an integral role in synchronizing 
activities mainly by regulating calcium dynamics [140] 
and sodium homeostasis [144-146]. These calcium 
dynamics and sodium homeostasis underlie the cellular 
switches, controlling metabolic activities in the brain. 
The coordinated activities of membrane associated 
calcium and sodium clocks are linked to cytoplasmic 
oscillatory molecular clocks that regulate uptake, 
transport and synchronize the homeostasis of these ions 
with metabolic responses to the metabolic activities of 
neurons and astrocytes [26].

The tripartite synapse contains multiple sites, which upon 
activation, induces sodium signals in astrocytes [147]. 
So, upon activation of glutamatergic neurotransmission, 
the released glutamate at the presynaptic knob 
diffuses to the surrounding post-synaptic neuron and 
astrocyte membrane to activate its cognate receptors/
transporters, which evokes inward sodium transients in 
astrocytes, which may be local or global, depending on 
the number and duration of activated tripartite synapses 
(Figure 2) [45,144]. This sodium current is believed to 
be one of the most important factors that provide the 
energy required for the movement of a couple of ions, 
neurotransmitters, fatty acids, amino acids and other 
molecules across membranes of the cell through the 
activation of astrocyte uptake and metabolism of glucose 
[146]. Thus, the anatomical structure formed by these 
interacting structures known as tripartite synapse, is 
critical to astrocyte-neuron metabolic integration and 
cooperativity. Therefore activation of astrocyte sodium 
ion fluxes mediate neuro-metabolic coupling in the brain 
[144].

In Figure 2, arrival of action potential triggers the 
release of glutamate into the synapse. Glutamate (Glu) 
stimulates its cognate receptor (mGluR) at the post-
synaptic terminal or translocates into the astrocyte 
via sodium-dependent glutamate transporters with 
corresponding influx of sodium ions (Excitatory Amino 
Acid Transporter, EAAT1 or Glutamate Aspartate 
Transporter, GLAST-3, EAAT2, and EAAT3) [43]. The 
Glu in astrocyte is converted to glutamine (Gln) by 
glutamine synthase. Increase in the level of astrocyte 
glutamate promotes the release of glutamine via SNAT3, 
a sodium-coupled neutral amino acid transporter 
that is capable of importing and exporting glutamine. 
Following its release into the extracellular space, 
glutamine is taken up by neurons via SNAT1 and 2. For 
each substrate, one sodium ion is cotransported and 1 
proton is antiported [148,149]. In neurons glutamine 
is converted to glutamate and ammonia by phosphate-
activated glutaminase. Neuronal glutamate can be 
metabolized to gamma-aminobutyric acid (GABA) by 
glutamate decarboxylase or packaged into synaptic 
vesicles via vesicular glutamate transporter (VGLUT) 
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and released into the synaptic cleft upon glutamatergic 
activation [48,147]. The influx of sodium ions following 
glutamate transporter activation in astrocytes generates 
an inward sodium current, which subsequently activates 
the Na+/K+ ATPase on the astrocyte plasma membrane 
[43]. While it is clear that changes in sodium current 
are integral to initiation of astrocyte metabolism, how 
neurally released glutamate is coupled to initiation of 
astrocyte glycolysis has not been completely unraveled. 
It can be suggested, however, that the mechanism may be 
related to activity dependent mediation of metabolism 
via increased ion fluxes. Also, sodium currents triggered 
upon activation of Na+/K+ pump is believed to underlie 
some of the metabolic processes that are associated 
with excitatory action of neutrally released glutamate 
on astrocytes. Indeed glutamate is the major excitatory 
neurotransmitter in the central nervous system, mainly 
synthesized in the TCA cycle and recycled between 
neurons and astrocytes [48,149]. Both astrocytes and 
neurons can synthesize glutamate from glucose [49]. The 
expression of pyruvate carboxylase in astrocyte affirms 
to the ability of these glial cells to mediate synthesis of 
glutamate from glucose [49].

The sodium-dependent glutamate transporters are 
the major means of sodium influx into astrocyte 
(Figure 2). However, sodium can also be transported 
into astrocyte through connexons, pannexins, Na+ 
dependent solute carrier transporters, NKCC1 (Na+/
K+/2Cl-co-transporter), NBC (Na+/2HCO3-co-
transporter), and other Na+ ion channels [145,150-
154]. But connexons and pannexins are channels that 
can transport sodium in both directions, depending on 
a number of factors including channel subunit charge 
[26,155]. A previous report showed that astrocyte-
neuron coupling via junctional complexes provides 
metabolic and electrotonic interconnections between 
the cells. Furthermore, the authors reported that this 
coupling is genetically determined during the process of 
ontogenesis [155].

Sodium homeostasis is maintained by the Na+/K+ 
ATPase, which functions to extrude Na+ in astrocytes 
by expenditure of energy in the form of ATP produced 
during sodium influx. This ATPase is believed to utilize 
about 40% of cellular energy to power this carrier [147]. 
The activity of this ATPase returns sodium transient 
to allow for the next cycle of sodium influx [144,156]. 
Rose et al. suggested that sodium ion functions as a 
signal molecule in astrocyte-neuron metabolic coupling 
in health and disease [144]. Indeed glutamate evokes 
spatiotemporal activity-dependent sodium signaling 
in astrocytes [145]. The functional consequences of 
sodium dysregulation in pathophysiological conditions 
have been previously discussed [145]. Astrocyte sodium 
ion disorder due to Na+/K+ ATPase dysfunctions 
has been reported in a couple of diseases involving 
neurometabolic disorders. In neurodegenerative 
diseases and senescence (which are also characterized by 
cerebral glucose dysregulation), decrease in the activity 

of Na+/K+-ATPase has been reported to cause energy 
deficiency [157,158]. Na+/K+-ATPase dysfunctions have 
been documented in other disorders including brain 
injury, cerebral ischemia, stress, and depression [135]. 
Na+/K+-ATPase dysfunctions also occur in diabetes 
mellitus [159,160]. A study by Kinoshita et al. showed 
the essential role of Na+/K+ ATPase in glio-neuro-
protection [161]. Thus positive modulators of sodium 
pump can be harnessed for health benefits. Interestingly, 
Sodhi et al. showed that pNaKtide, a peptide that inhibits 
Na+/K+-ATPase mediated reactive oxygen signaling, 
improved insulin signaling and metabolism in laboratory 
animals, indicating that pharmacological agents can 
be designed to ameliorate the effects of central Na+/
K+-ATPase dysfunctions in brain diseases [160,162]. 
Because Na+/K+-ATPase is also involved in learning and 
memory, such pharmacological agents may play a role in 
ameliorating memory deficits in diseases, characterized 
by both cognitive impairments and glucose metabolic 
disorders [158]. A couple of preclinical and clinical trials 
have shown that inhibitors of sodium channels can be 
successfully used to alleviate the suffering of individuals 
with certain brain diseases [163-165]. Several 
pharmacological compounds that act on central sodium 
channels to relieve the symptoms of cerebral metabolic 
disorders have been discussed by Waszkielewicz et al. 
[164]. In multiple sclerosis, Parkinson disease, febrile 
seizures and neuropsychiatric disorders, voltage-gated 
sodium channel blockers have been found effective to 
improve both symptoms and neurometabolic functions 
of the brain [164,166]. For instance, pharmacological 
agents such as topiramate and riluzole (voltage-gated 
sodium channel blockers), exerts neuroprotective effects 
on the brain, at least in part, by improving sodium ion 
homeostasis and cerebral metabolic functions as well as 
neurotransmitter activity [164]. Clinical trial has shown 
promise for application of sodium channel blockers in 
multiple sclerosis [167].

The intracellular signaling of sodium via the Na+/
K+ ATPase in astrocytes is coupled to homeostasis of 
extracellular and intracellular potassium, calcium and 
pH in the brain [156]. Indeed neurally-mediated release 
of glutamate following brain activation has been linked 
to elevation of cytoplasmic free calcium that propagates 
as waves from astrocytes to neighboring astrocytes and 
neurons [168,169]. In response to neurally released 
glutamate, astrocytes can directly modulate cytoplasmic 
calcium fluxes and affect transmission of signal by 
neighboring neurons through changes in calcium levels 
[170]. In addition to the tripartite synapse participation in 
ion homeostasis, gap junction connexons and pannexins 
are essential for the propagation of calcium waves in 
neurons and astrocytes. The functional implication 
of this activation lies on several activities of the brain, 
including metabolism and action potential propagation 
[119,144,170]. Astrocyte-neuron calcium signaling 
plays an important role in astrocyte-neuron metabolic 
coupling via regulation of astrocyte and neuronal activity 
[144,171]. In a recent book, extensive analysis of the 
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literature revealed that calcium homeostasis in the cell 
is coupled to mitochondrial metabolism, which in turn 
is linked to cytosolic calcium waves [26]. Thus calcium 
waves are critical to astrocyte-neuronal metabolism.

However, apart from glutamate, other neurotransmitters 
and a couple of gliotransmitters can trigger calcium 
waves [119]. Increase in neuronal activity will result 
to increased release of glutamate, which will increase 
waves of calcium and other ions. This will be associated 
with increase in energy demand. Thus glycolysis 
and glycogenolysis, triggered mainly by waves and 
currents of ion flow, metabolic substrates, hormones 
and neurotransmitters will increase to maintain the 
activity level of the cell [43,172]. Calcium inhibitors 
have been found to have beneficial effects on brain 
metabolism [165-167]. For instance, blockade of CaV1.3 
activity has been found to be effective in Parkinson’s 
disease [165,169]. Indeed patients who are placed on 
L-type calcium blockers for cardiovascular disease 
experience substantially reduced risk of Parkinson’s 
disease compared to those who are not on calcium 
channel blockers or the general population [164]. The 
GABA derivative, gabapentin, binds to the α2δ subunit 
of CaV2 channels to inhibit this receptor, thereby 
relieving neuronal hyperexcitability and symptoms 
of brain metabolic dysfunctions due to dysregulation 
of calcium signaling [164]. Several pharmacological 
compounds that act on central calcium channels have 
been discussed and are currently in different phases of 
clinical trials for possible application in brain diseases 
involving neurometabolic dysfunctions (reviewed in 
Waszkielewicz et al.) [164]. Though their mechanisms 
of action vary, dihydropyridines such as nifedipine, 
nitrendipine, nimodipine and isradipine exhibit 
neuroprotective effects [164,173,174]. It was previously 
reported that systemic administration of isradipine 
in rodents resulted to rejuvenation of dopaminergic 
neurons and renewed capability to generate 
autonomous activity [175]. Experimental data have 
shown that dihydropyridine calcium channel blockers 
protect against and reduce mortality rate in Parkinson’s 
disease patients [176]. Relatively recent reports have 
shown that pharmacological inhibition of brain L-type 
calcium channel isoforms (e.g. Cav1.2 and Cav1.3) 
may be beneficial in the treatment of brain diseases 
involving metabolic dysregulation [166]. Although the 
mechanisms of actions of calcium channel blockers on 
brain cells have not been completely unraveled, previous 
studies have suggested that these calcium inhibitors are 
involved in mediating long-term potentiation and long-
term depression [170].

CONCLUSION

This paper reconciled different opposing data on 
cerebral metabolism and revealed key cellular and 
molecular nexus linking astrocyte-neuron metabolism. 
The astrocyte and neuron metabolic machinery is 
coupled to each other via calcium waves and sodium 

currents, mediated by signaling of glutamate and other 
transmitters in the tripartite synapse. Glutamate-
glutamine cycling ensures cooperativity of astrocyte-
neuron metabolism in accordance with the physiological 
requirements of the brain; however, it does not 
guarantee neuronal dependency on astrocyte derived 
lactate. Astrocyte-neurometabolic coupling is essential 
in normal synaptic functioning, and is critical in health 
and disease. Inhibitors of specific sodium and calcium 
channel subtypes expressed in the brain have been 
found to be beneficial in certain brain diseases involving 
metabolic dysregulation.

FUTURE DIRECTIONS

Since astrocyte-neurometabolic coupling is associated 
with ion (e.g. sodium, calcium) homeostasis [1,2,26,144-
146], future studies will investigate the effects of 
pharmacological agents on Na+/K+ ATPase, sodium and 
calcium ion channels as well as key molecular switches 
that determine the activity level of these ions and 
related subsystems in diabetes mellitus, prediabetes, 
neurodegenerative diseases, and other brain diseases 
involving metabolic dysregulation. Future investigations 
on the synergism of astrocyte-neuron metabolism of 
glucose can provide important data for pharmacological 
intervention in metabolic brain diseases and cognitive 
impairments. It is therefore important for future studies 
to investigate how inhibitors of different sodium and 
calcium channel subtypes respond to changes in neuronal 
and astrocyte metabolism in health and disease. This 
may provide novel information for potential therapeutic 
application for some brain diseases involving metabolic 
dysregulation.
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