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ABSTRACT 

 

Physical exercise has long been proven as a way to increase metabolic status, synaptic plasticity and protein 

regulation in order to maintain cognitive function and brain health. There has been a limited study focusing on 

the protective effect of physical exercise towards cognitive function during stress. This research is quasi 

experimental studies with post test only control group design, conducted in the animal house and molecular 

biology laboratory of Medical Faculty of Universitas Sriwijaya. As many as 32 white mice age 10 weeks old 

weighing 25-35 gr were divided into four groups. The first group was the control group, the second one was 

treated with immobilization stress 2 hours/daily for 21 days, the third group had been conditioned for 30 minute 

running at a speed of 11 m/min for 14 days, while the fourth one was treated with physical exercise after being 

exposure to immobilization stress. The post synaptic density (PSD) 95 level in hippocampus and serum cortisol 

were measured by using enzyme-linked immunosorbent assay, while spatial memory was assessed by using 

Morris Water Maze Test. Iimmobilization stress for 21 days showed significant elevation of serum cortisol as well 

as decrement of PSD 95 level and spatial memory compared to control group. Low intensity physical exercise 

showed significant elevation of PSD 95 level and spatial memory compared to control group. Therefore, low 

intensity physical exercise can prevent the decrement of PSD 95 level and spatial memory due to stress. 
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INTRODUCTION 

 

Alzheimer’s and Parkinson’s disease are the main 

cause of dementia among the elderly [1]. The 

prevalence rate of dementia has been increasing 

annually along with the rising number of the 

elderly population and the higher number of living 

expectation worldwide [2]. The exact cause of 

these neurodegenerative diseases is still 

unknown, though it is suspected to have been 

mediated by complex interactions between age, 

genetics, and environmental factors such as stress 

[3, 4]. 

 

Stress is a non-specific reaction of body towards 

various demands physically and psychologically, 

thereby disturbing homeostasis and urgings 

physiological and behavioral responses [5, 6]. 

When a condition is interpreted as a stress, 

hypothalamus produces corticotropin-releasing 

hormone (CRH) and arginine-vasopressin 

hormone (AVP) which will stimulates the 
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secretion of cortisol [7, 8]. The long-term release 

level of cortisol due to chronic stress exposure will 

induce damaging effects in several brain regions 

[8, 9]. Cortisol induces oxidative stress by causing 

glutamate excitotoxicity, increasing the level of 

nitric oxide (NO) and cyclooxygenase (COX), 

protein oxidation and lipid peroxidation as well as 

reducing the endogenous antioxidant activity both 

enzymatic and non-enzymatic [10, 11]. Chronic 

stress could also lessen reduce the neurotrophin 

expression such as brain derived neurotrophic 

factor (BDNF) and synapse proteins like such as 

synaptophysin (SYP), Post Synaptic Density 95 

(PSD 95), neurexin, and neuroligin and post 

synaptic density 95 (PSD 95)[12, 13]. 

 

Physical exercise has been is proven to have been 

able in improving learning process, memory 

ability, and hamper the lowering cognitive 

function in old age, lower the level of depression 

and protect the body by preventing several 

neurologic diseases such as Parkinson’s disease, 

Alzheimer’s disease and as well as ischemic stroke 

[14,15]. Physical exercise can induce several 

stimuli to increase the status of body metabolism 

and functions, including brain system [16]. A 

physical exercise mediates the recovery function 

of neurons cell through via three mechanisms, i.e. 

comprising neurogenesis, angiogenesis and 

synaptogenesis [17]. Exercises could also able to 

modulate numerous neurotropin that will which 

regulates the remodeling and the branching of 

dendrite and axon; increase synaptogenesis at the 

end of axon terminals; increase the efficacy of 

synapse transmission and mediate the synapse 

functional maturation [18]. A proper synaptic 

activity features the amount of information 

entering the brain, therefore so any permanent 

changes to synapse would determine the process 

of memory learning and building [19]. PSD 95 is 

the major scaffolding protein and structure in 

synapse and is an essential structural component 

in mature dendritic spines. Two-third of the total 

amount of new and damaged dendritic spines is 

not equipped with PSD 95 [20, 21]. PSD 95 could 

intertwine with numerous molecules in the post-

synaptic membrane surface such as NMDA 

receptors, AMPA complex receptors, adhesion 

molecules, ionic compounds and signal relay 

molecules so such protein is believed to play an 

important role in organizing PSD molecularly [22, 

23]. PSD 95 could also affect the morphology and 

functions of dendritic spines. In fact, PSD 95 is one 

of the causes of in the dendritic spines’ 

morphology changes, volume increase and the 

formation of perforated synapses in dendritic 

spines. Furthermore, PSD 95 strengthens the 

excitatory postsynaptic process delivered by 

AMPA receptors by regulating diffusion, trapping, 

and expressing AMPA receptors to the cell surface, 

thus would increase the process of synapse 

strengthening [24, 25]. 

 

In this study, we thus investigated the effect of low 

intensity exercise on spatial memory ability and 

hippocampal synaptic plasticity, by demonstrating 

the expression of hippocampal PSD 95 in chronic 

immobilization stress. 

 

MATERIAL AND METHODS 

 

Animal and Experimental Design 

The research subjects were 32 of Mus Musculus, 

10 to 12-week-old male Swiss Webster strain 

within 25 to 35 grams, conserved in the Animal 

House of Medicine Faculty of Universitas 

Sriwijaya. Each cage housed eight mice fed by food 

and drinks every day ad libitum. The conservation 

room was well ventilated with maintained room 

temperature of 25-30 oC, humidity of 50 -60% and 

dark: light cycle of 12:12 hours.  

 

Seven days after acclimatization, the subjects were 

randomly divided into four groups consisted of 

eight mice. Group 1 was the group without 

physical exercise and stress, group 2 was a group 

with immobilized stress and no physical exercise. 

Group 3 had physical exercise without 

immobilized stress. Finally, physical exercise and 

immobilized stress were applied for group 4. 

 

The mice that were given physical exercise would 

run in wheels, aimed so that the training duration 

and intensity could be controlled. Mice would run 

for 30 minutes with the velocity of 11 meters per 

minute for 14 days. As for the group of mice 

treated with immobilized stress, they were put in 

a particular plastic canister, specially designed to 

ensure the mice would stay in dorsal recumbent 

position without access to food and drink. Such 

immobilized stress would be applied for two 

hours (10 am to 12 pm) for 21 consecutive days. 

Meanwhile, as for the mice grouped to do physical 

exercise and were given stress, they had been 

treated with immobilized stress for seven days 

prior to the experiment. The mice would later be 

trained to run in wheel after being exposed to 

two-hour long immobilized stress. 
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Morris Water Maze Test (MWM Test) 

MWM test was conducted to assess the function of 

spatial and cognitive memory in mice. Mice were 

put in a 20 cm-deep plastic container with the 

diameter of 1.5 meter which would later be filled 

with clean water. The training took four days (day 

18 to day 21) and consisted of two phases 

comprising one day of pre-training and three days 

of trial. In pre-training, the platform was 

positioned in the middle of container with the 

upper part at an inch above water level. As for in 

trial phase, the container was filled with water 

laced with food colorant to make the water 

opaque as to hide the platform which was placed 

at an inch below water level. Mice were then 

allowed to swim to find the hidden platform by 

themselves for one minute. Afterwards, if the mice 

failed to find the platform, the researcher would 

direct the mice to the step platform and the mice 

would stand on the platform for 15 seconds before 

finally being released back into the pool to their 

initial position to later be recorded as in the 

duration it took for the mice to find the hidden 

platform as latent period in seconds. 

 

Serum Cortisol Measurement 

To measure the level of success in the immobilized 

stress induction, 0.5 ml blood was collected from 

the lateral tail veins at day 0, 7 and 21 for blood 

cortisol level measurement. The blood was 

centrifuged at 2000-3000 rpm for 20 minutes at 

250C. Serum was collected into micro tubes and 

refrigerated at -200C in order to measure cortisol 

levels in all samples. Serum samples were then 

analyzed by an ELISA kit which was usually 

utilized specifically for mice. Blood sample was 

always collected at 8 AM to prevent the effect of 

circadian rhythm in cortisol.  

 

PSD 95 Measurement 

Mice had to be sacrificed 24 hours after the last 

training session by decapitation to obtain fresh 

tissues by decapitation procedure without 

anesthesia as outlined by Institutional Animal 

Care and Use Committee (IACUC). Hippocampus 

was then separated from the cerebellum and brain 

stem manually with a scalpel blade and a micro 

tweezer, which was then stored at -800C. The 

hippocampus was homogenized with blade 

homogenizer after being added with PBS. Next, the 

sample was centrifuged at 3,000 rpm for 20 

minutes in 4ºC. Samples were then analyzed by an 

ELISA kit. 

 

 

RESULTS 

 

Cortisol 

The results of mean and one-way ANOVA of 

Cortisol are summarized in Table 1. 

 
Table 1: Serum Cortisol Level in day 0,7 and 21  

 

Group 

Cortisol 

level 

Day 0 

Cortisol 

level 

Day 7 

Cortisol 

Level 

Day 21 

1 6,968±0,442 7,011±0,624 7,090±0,485 

2 6,761±0,343 18,314±0,198 21,973±0,615 

3 6,971±0,576 7,123±0,139 7,128±0,383 

4 6,714±0,3949 18,277±0,185 21,860±0,583 

ANOVA 

test 
0,582 0,000 0,000 

 

Table 1 shows no significant differences on the 

level of cortisol between the mice groups during 

the initial position. However, as the immobilized 

stress was applied, there was a noticable increase 

of cortisol level in groups 2 and 4, compared to 

group 1 at day 7 and day 21. Meanwhile, there was 

no significant difference on the cortisol level of the 

group of mice with physical exercise ( group 3), 

compared to group 1 at day 7 and day 21. This 

showed that chronic immobilized stress could 

raise the level of cortisol while the same cannot be 

said for the low-intensity physical exercise. 

 

PSD 95 

The results of mean and one-way ANOVA of PSD 

95 are summarized in Figure 1. 

 

 
Figure 1: PSD 95 Level in the Hippocampus. 

 

Figure 1 indicates a significant difference on the 

mean level of PSD 95 between all groups whereas 

the highest level of PSD 95 was in the mice group 

with low-intensity physical exercise without 

stress (Group 3). The lowest level of PSD 95 was in 

the group treated with stress without low-

intensity physical exercise (Group 2). 

One way ANOVA Test, p=0,000 
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Furthermore, the post hoc test indicated no 

significant difference between the group with low-

intensity physical exercise and stress (Group 4) 

compared to control (Group 1) (p>.05).  

 

MWM Test 

The latent period of MWM test was measured for 

three consecutive days, started from day 19 to day 

21. The one-way ANOVA test was conducted to 

assess whether there was a significant differencs 

of latent time on MWM test at day 19 to day 21. 

The results of mean and one-way ANOVA of MWM 

test are summarized in Figure 2. 

 

 
Figure 2: Spatial memory Ability on Day 19, 20 and 21 

 

The result of this study revealed on day 1, there 

was no significant difference of the mean latent 

time to find the hidden platform (p = 0.231). On 

day 3 of the MWM test, a significant difference was 

seen on the mean latent time to find the platform 

(p=0.000), of which the highest latent time was 

recorded on the mice group treated with stress 

without low-intensity physical exercise (Group 2) 

and the lowest was on the group with low-

intensity physical exercise without stress (Group 

3). Moreover, the study also illustrates the mice 

group treated with physical exercise and stress 

(Group 4) had shorter latent time than the group 

2. 

 

DISCUSSION 

 

The main finding of the study was that chronic 

immobilized stress was proven to increase the 

level of cortisol while low-intensity physical 

exercise did not. Furthermore, low-intensity 

physical exercise for 14 days was proven to 

increase the level of PSD 95 as well as improving 

the cognitive ability of both groups of mice treated 

with chronic stress and not treated with 

immobilized stress.  

 

As for the physical and psychological stimuli such 

as physical exercise and stress, they could affect 

the cortisol level [26]. Chronic immobilized stress 

as a form of psychosocial stress has been proven 

to significantly increase the level of cortisol [27-

29]. 

 

In chronic stress, the increase of cortisol level 

occurs in a long period of time due to the 

hyperactivity of HPA system [7]. Continuous 

exposure of immobilized stress could significantly 

reduce the protein expression of glucocorticoid 

receptor (GR) on hippocampus, therefore 

disrupting GR function in providing negative 

feedback [28].  

 

Physical exercise is also one of the influencing 

factors of HPA axis. To respond to physical 

exercise, the body would activate HPA axis and 

secrete cortisol. The effect of physical exercise 

towards cortisol level depends on several factors 

such as the type, intensity and duration of physical 

exercise [26, 30, 31]. The lowest limit of physical 

exercise intensity which could increase cortisol 

level is that with intensity of 60% of VO2 max. 

Meanwhile, physical exercise with the intensity 

less than 60% VO2 still could only increase cortisol 

level if done with the minimum duration of 90 

minutes [31, 32]. Such research result provides 

support for previous studies which reported that 

low-intensity physical exercise did not increase 

cortisol level. High-intensity physical exercise do 

not contribute to the changes in GR, therefore the 

increased cortisol level can return to normal at 

120 minutes post exercise [32]. 

 

The increase of cortisol level in chronic stress 

could reduce the expression of growth factors, 

particularly BDNF [12, 13, 33]. Cortisol could 

affect BDNF synthesis including transcription, 

translation, trafficking and secretion. Cortisol 

directly affects BDNF promoter and lowers the 

activity of activator protein-1 (AP-1) and CREB 

which are essentially required in the transcription 

of the BDNF gene. However, cortisol disrupts its 

stability and triggers the degradation of mRNA 

BDNF. Cortisol is also proven to be able to 

influence the proses of BDNF signal distribution 

through TrkB modulation and its intracellular 

cascade. Moreover, cortisol could reduce the 

expression of TrkB and activities of Akt and 

mammalian target of rapamycin (mTOR) which 

are the essential components in 

phophatidylinositol 3-kinase (PI3K/Akt) pathway, 

activated by BDNF. The decreasing activity of 

mTOR is believed to be an important factor in the 

lowering amount of synaptic proteins such as SYP, 

p = 0,231 
p = 0,000 
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PSD 95, neurexin and neuroligin [13, 33, 34]. 

Chronic stress is also capable of increasing the 

neuron vulnerability towards oxidative stress. 

Chronic stress causes glutamate toxicity, Ca2+ 

overload, cytokine release, and reduced activities 

of endogenous antioxidants so it triggers the 

neuronal apoptosis process [35, 36].  

 

BDNF along with its specific receptor, TrkB, is the 

main neurotrophin which mediates the process of 

synaptic plasticity [18]. BDNF-TrkB plays an 

important role in the process of maturation and 

synaptic growth through transport regulation of 

PSD 95 to dendritic spines. BDNF activates PI3K-

AKT pathway and triggers the transfer of PSD 95 

to synapse via vesicular transport. The activation 

of BDNF-TrkB is also required in the 

palmitoylation process of PSD 95 which is 

mediated by phospholipase C γ (PLC γ) and 

protein kinase C (PKC). PSD 95 palmitoylation acts 

on the sticking of its protein on membrane vesicle 

and its insertion to synapse. Another intracellular 

pathway activated by BDNF-TrkB is the pathway 

of mitogen activated protein kinases/extracellular 

signal- regulated kinases (MAPK/ERK). The 

MAPK/ERK and PI3K-AKT pathways in sync 

would stimulate the activation of mTOR which 

acts on the acceleration of PSD 95 expression in 

dendritic spines by increasing the 

phosphorylation of eukaryotic initiation factor 4E 

(eIF4E), 4E-binding protein 1 (4E-BP1), and 

ribosomal protein S6 to later enhance the 

translation process. The MAPK/ERK pathway also 

affects the transcription process by CREB 

phosphorylation which would activate BDNF gene 

and amplify synaptic maturation as mediated by 

BDNF. With that said, the direct role of CREB 

towards PSD 95 synthesis still needs to be 

explored further [13, 37, 38]. 

 

Physical exercise could impact the neuroplasticity 

process via three main mechanisms. First, physical 

exercise could enhance the process of 

neurogenesis and neuroplasticity through the 

increase of numerous neurotransmitters, 

neurotrophins, and various intracellular cascades 

which mediate such process. Next, physical 

exercise would increase the level of vascular 

endothelial growth hormone (VEGF) which 

facilitates the angiogenesis process and 

vascularization repair in brain. Finally, physical 

exercise would enhance the durability of neuron 

cell by affecting the oxidative balance in brain [17, 

39, 40]. 

 

Low-intensity physical exercise is known to have 

improved the density of dendritic spines, the 

amount of synapses, and pre and postsynaptic 

proteins such as PSD 95 and SYP [13, 41, 42]. 

Physical exercise is a form of stimulation which 

could trigger neuroplasticity process [40]. 

Physical exercise could induce the process of long 

term potentiation (LTP) by lowering LTP 

threshold and increasing a number of intracellular 

cascades such as CREB, CaMKII and MAPK [43,44]. 

The end turnout of LTP is new proteins synthesis 

such as several growth factors namely BDNF and 

Nerve Growth Factor (NGF) [7, 8]. BDNF increase 

on physical exercise is also mediated by the 

exercise effect towards a number of 

neurotransmitters such as norepinephrine and 

serotonin. The rising level of norepinephrine 

would enhance the expression of mRNA BDNF. 

Meanwhile, the positive effect of physical exercise 

towards serotonin (5-HT) is related to the 

improvement of 5-HT1A and 5-HT2A receptors 

which would increase the level of cAMP/PKA to 

later activate CREB. Physical exercise could also 

have an impact on TrkB activities through Src 

tyrosine kinase- G-protein coupled receptor (GPCR) 

pathway to later directly activate TrkB receptor 

without involving BDNF [13, 45].  

 

The study has also assessed the mice cognitive 

function with Morris Water Maze (MWM) method 

as the output of neurogenesis process. MWM 

method is utilized to assess the learning and 

spatial memory of rats [46]. Spatial memory 

illustrates hippocampus function in the formation 

of cognitive map which enable an individual to 

recognize a location. Thus, with the changes of 

cellular activities in hippocampus could be seen by 

the changes occurring on the spatial learning 

process. The study result has shown that the mice 

group treated with stress had lower cognitive 

ability while the mice group given low-intensity 

physical exercise had better cognitive ability. 

Stress could cause changes in calcium 

homeostasis, glutamate transmission, increase in 

the process of long term depression (LTD), and 

disruption in LTP induction process so that it 

would reduce the hippocampal excitability which 

would disturb the process of memory learning and 

development [8, 47]. Low-intensity physical 

exercise could improve a number of growth 

factors such as BDNF which would boost the 

neurogenesis increase in the hippocampus [48]. 

Physical exercise would also boost the 

improvement of short term potentiation and LTP 
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process as a basic mechanism in the formation of 

memory and learning [14, 49]. 

 

CONCLUSIONS 

 

Low-intensity physical exercise is proven to have 

been able to improve brain or neuron capability to 

undergo neuroplasticity. Furthermore, low-

intensity physical exercise is also proven to 

restore the brain’s or neuron’s neuroplasticity 

post chronic stress.  
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