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INTRODUCTION

The word “cognition” refers to a variety of subcomponents 
of higher brain functions such as thinking, reasoning, 
planning, attention, memory, learning, which are 
executed by the human brain [1]. However, depending 
on the context, cognitive functioning can simply refer 
to learning and memory [2]. Different definitions of 
cognitive function have been used by other authors 
[3–11]. Cognitive function is crucial to the effectiveness 
and ongoing daily life activities of humans [1]. Cognitive 
disorder or impairment, defined as cognitive decline 
greater than expected for the person’s age and education 
level, which may interfere with the professional or 
social life of the sufferer [12], is believed to be the 
major determinant of disability in late life [1]. Cognitive 
impairment is a syndrome of several diseases, including 
Alzheimer’s, Parkinson’s, and Huntington disease, and 
multiple sclerosis [12–17]. But Alzheimer’s disease 
accounts for a higher incidence of cognitive impairment: 
about 60–75% of all cases of cognitive impairment or 
dementia (severe cognitive impairment) worldwide [18–
20]. It should be mentioned that cognitive impairment 
is a serious problem that can develop even in children 
and adolescents [21–23]. Depending on the degree of 
severity, cognitive impairment observed in different 
neurological diseases poses enormous financial burden 

to sufferers, families, caregivers and public health 
[24–28]. Due to the growing prevalence and associated 
mortality of the neurological diseases, associated with 
cognitive impairment [24,26], it is evidently necessary 
to search for new frontiers that will lead to potentially 
new treatment of cognitive impairment or diseases that 
predispose to cognitive decline.

Although the mechanisms of development of cognitive 
decline in different neurological diseases differ, 
research indicates that neuro- and glio-inflammatory 
reactions and cell death are critical in almost all diseases 
associated with cognitive impairment [29,30]. Very 
recently, emerging data have revealed that dysfunctions 
of sweet taste receptor signaling may be responsible 
for cognitive impairment [31], confirming our initial 
hypothesis about the role of sweet taste receptors in 
regulation of cognitive functioning [32]. Surprisingly, 
dysfunctions in sweet taste receptor signaling were 
also associated with inflammatory response pathway 
[31]. Zhou et al. recently showed that sweet taste 
receptors function as pivotal immune sentinels. The 
authors revealed that key components of the taste 
signaling cascades (α-gustducin; phospholipase C β2, 
PLCβ2; monovalent selective cation channel, TRPM5) 
were down regulated together with abnormal increase 
in glucose level, which in turn predisposed to elevated 
intracellular reactive oxygen species, decrease Ca2+ 
and subsequent activation of NLRP3 (NLR Family 
Pyrin 3) domain containing inflammasome signaling, 
possibly mediated via NF-κB (nuclear factor κB) 
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activation [31]. Indeed the role of sweet taste receptor 
signaling in immunity is an important mechanism 
that link sweet taste receptor with neurodegenerative 
diseases and glucose metabolism [31]. Emerging data 
indicate that neuro- and glio-inflammation represents 
the underlying mechanisms of the etiopathogensis of 
neurodegenerative diseases [33,34]. Moreover, previous 
studies have reported not only taste dysfunctions, but 
also astrocyte-neuron glucose metabolic dysfunctions in 
neurodegenerative diseases such as multiple sclerosis, 
Alzheimer’s, and Parkinson’s diseases [35–41]. 

Sweet taste receptors are grouped as type 1 (T1R). 
Functional sweet taste receptors mainly function as 
dimers and are activated by a plethora of natural and 
artificial ligands. The natural ligands for sweet taste 
receptors include monosaccharides (glucose, galactose, 
fructose), disaccharides (sucrose, maltose, lactose), 
amino acids (glycine, alanine, threonine, D-histidine, 
D-tryptophan), and sweet proteins (brazzein, thaumatin, 
monellin). The artificial ligands for sweet taste receptors 
include acesulfame potassium, aspartame, cyclamate, 
sucralose saccharin, glycyrrhizin, and neotame [32]. 
The second (T2R) type of taste receptors is responsible 
for sensing bitter substances. This review is concerned 
only with type 1 taste receptors, in particular, the taste 
receptor T1R2+T1R3 heterodimer. Taste receptors 
were initially discovered in the oral cavity, then in other 
regions of the gastrointestinal tract [42–45], and later 
in endocrine pancreatic cells [46]. Taste receptors have 
been found in blood cells, in particular, macrophages 
[47], and respiratory track [48] and are now known 
to be ubiquitously expressed in the body. Brain 
(neuronal) type T1R was fairly recently discovered [49]. 
Importantly, the authors [49] identified the principal 
(functional) taste receptor T1R2+T1R3 heterodimer, 
and all subtypes of sweet taste receptors (T1R1, T1R2 

and T1R3) in the neurons of hypothalamus, CA area 
and dentate gyrus of the hippocampus, and cortex [49]. 
Interestingly, these brain regions are implicated in both 
energy homeostasis and cognitive functioning [32]. 
Indeed discoverers of neuronal sweet taste receptors 
also showed that these receptors are essential for 
controlling cerebral metabolism. In a relatively recent 
review [50], our research group has suggested that 
T1R2+T1R3 heterodimer is the master coordinator of the 
astrocyte-neuron metabolic machinery, and highlighted 
the molecular pathways that link taste sensing with 
metabolism. Truly, the relationship between glucose 
metabolism and cognitive functioning has been reported 
in a couple of studies [51–54]. So, extra-oral sweet 
taste receptors can mediate a variety of physiological 
processes, including metabolism, inflammatory 
responses, and a range of cellular activities [48,55,56]. 

In light of accumulating evidences, suggesting that 
sweet taste receptors play an integral role in cognitive 
functioning and that dysfunctions in components of the 
signaling pathway of sweet taste receptor may underlie 
cognitive disorders in some brain pathologies, in this 
mini review, I integrate very recent studies that suggest 
possible molecular mechanisms, linking T1R2+T1R3 
sweet taste receptor heterodimer sensing in neurons 
with cognitive functioning. This review also discusses 
potential research directions that may yield new lines 
of treatment for brain disorders, involving cognitive 
impairment such as Alzheimer’s disease.

Signal transduction pathway of T1R2+T1R3 receptor 
heterodimer

The mechanisms of taste receptor signaling involve 
activation by sweet substance (e.g. glucose), resulting 
to downstream signaling that culminate in stimulation 

 
Figure 1: Signal transduction pathway of T1R2+T1R3 receptor
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of neuropeptide secretion, activation of transcription 
factors and gene expression (Figure 1).

In Figure 1, Neuronal T1R2+T1R3 activation by glucose 
induces intracellular signaling in which the α-subunit 
gustducin dissociates from the βγ subunits upon 
exchange of GDP for GTP [57–59]. The α-gustducin 
activates the membrane bound enzyme adenylate 
cyclase, which mediates the conversion of ATP to cAMP 
[60]. However, depending on the isoforms, α-gustducin 
can also activate phosphodiesterase (PDE) to decrease 
intracellular cAMP levels [59–61]. Increase in cAMP level 
can stimulate cAMP-dependent ion channels and protein 
kinases such as PKA, which when activated, recruits 
secretory granules towards the plasma membrane for 
exocytosis. Activated PKA can also translocate to the 
nucleus to activate gene expression [60]. The βγ subunits 
activate phospholipase Cβ (PLCβ) with formation of 
1,4,5-inositol trisphosphate (IP3). IP3 is responsible for 
the release of Ca2+ from intracellular stores. Increased 
Ca2+ level in the cytosol activates calcium dependent 
kinases, monovalent selective cation channel (TRPM5), 
calcium homeostasis modulator 1 (CALHM1) and other 
receptors [59,61–63]. The evoked increase in Ca2+ may 
also lead to release of ATP via dedicated ion channel 
receptor [64]. The voltage-gated ion channel, CALHM1, 
has been implicated in taste related ATP release [43]. 
DAG, released upon βγ subunit activation, can stimulate 
protein kinase C (PKC), which phosphorylates or activates 
several intracellular targets, including transcription 
factors. A couple of secretory neuro-peptides and 
hormones may be released in T1R2+T1R3 receptor 
downstream signaling [32]. Events resulting to activation 
of ion channels can lead to membrane depolarization 
and subsequent generation of action potential [64]. 
Taste receptor T1R2+T1R3 also cooperates with the 
membrane glucosensors (e.g. GLUT2) to control glucose 
uptake. Gap junctions, hemichannels, and pannexins 
play a role in homeostasis of ions and other signaling 
molecules in many physiological processes occurring in 
the neuron [32]. 

Deciphering the mechanisms of neuronal 
T1R2+T1R3 involvement in cognitive functioning

Cognition is a higher mental function of the neocortex, 
required for almost all activities of humans as well as 
survival. Cognition depends not only on neocortical, but 
also hippocampal processes. This higher brain function 
is also related to several facets of behavior and emotion 
[32,65]. Based on accumulating data, it is suggested 
in this paper that T1R2+T1R3 signaling is coupled 
to neural network of cognition via neurotransmitter, 
cAMP-, Ca2+-dependent and PKC related transcription 
activation and the expression of early response gene 
(also known as immediate early genes). Indeed cAMP-, 
Ca2+-dependent signaling and activity of certain protein 
kinases (including PKC and PKA) that culminate in 
activation of transcription of early response genes have 
been known to underlie memory formation, storage 

and retrieval. Early response genes are a class of genes 
that increase transiently in expression in response to 
extracellular signals such as neurotransmitters. Early 
response genes code for transcription factors that 
transiently increase transcription in certain areas of the 
brain upon stimulation. The transcription factors play a 
crucial role in signal transduction cascades, necessary 
for memory formation and consolidation [66]. They 
form important molecular nexus between neuronal 
activity and cognition [67].

T1R2+T1R3 signaling is coupled to cognitive network 
via stimulation of neurotransmitter secretion, 
transcription signaling and early gene responses

From the discussion above, it is evident that cognitive 
functioning involves interaction of multiple players at 
different levels: neuromodulators, neurohormones, 
neurotransmitters, energy substrates (mainly glucose), 
and transcription factors [68–70]. Transmitter 
molecules involved in cognitive functioning include but 
are not limited to acetylcholine, serotonin, dopamine, 
d-serine, ATP and glutamate [32,68,71]. Recall that ATP 
and glutamate are crucial neurotransmitters, involved 
in sweet taste receptor signaling (Figure 1). Therefore, 
sweet taste signaling, at least via ATP and glutamate, 
can substantially affect cognitive functioning. Emerging 
research has shown that taste receptors stimulate 
the secretion of not only ATP and glutamate, but also 
serotonin and dopamine [72,73]. These transmitter 
molecules and a range of receptors (including N-methyl-
D-aspartate, NMDA receptors; α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic, AMPA, receptor) [74] 
mediate the induction of long-term potentiation (LTP), 
and synaptic plasticity. Importantly, LTP and synaptic 
plasticity are factors that are essential for storage and 
retrieval of neural information [32,68]. LTP and synaptic 
plasticity are associated with activity dependent neuronal 
signaling and activity of transcription factors, and are 
important for memory consolidation [59–61,75,76]. For 
example, stimulation of group I metabotropic glutamate 
receptors, Gq coupled receptor (mGluR1 and mGluR5) by 
glutamate can trigger a range of cellular signaling (PLCβ, 
certain isoforms of adenylate cyclase and MAP kinase) 
that ultimately result in LTP induction that underlie 
long-term synaptic plasticity and metaplasticity in 
neuronal assemblies [68,76,77–79]. Several protein 
kinases including MAP kinase, CaMKIIα, CaMKβ, PKA 
and PKC are involved in LTP induction and synaptic 
plasticity [80]. These protein kinases, in addition to 
cAMP and calcium ions, can regulate the activities of 
transcription factors such as enhancer-binding protein 
(EBP), CREB (cAMP related element binding protein), 
early growth response protein (egr) (also known as zinc 
finger protein 225, Zif268; nerve growth factor-induced 
protein A, NGFI-A), activator protein-1 (AP-1), Rel/NF-
κB, Elk-1, c-Jun, Jun-B, Jun-D, c-fos [32,66,81–84] and 
neuronal PAS domain protein 4 (Npas4) [67], which are 
implicated in long-term synaptic plasticity and memory 
consolidation. The signaling of these transcription 
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factors is largely dependent on neuronal activity 
[74,83]. It is believed that some of these transcription 
factors also influence activity-dependent expression of 
cytoskeleton-associated protein (e.g. activity-regulated 
cytoskeletal-associated protein, Arc; and cofflin) [85,86] 
as well as girdin (girders of actin filament) [87] to 
modulate a range of physiological processes associated 
with synaptic plasticity and metaplasticity. Interestingly, 
Ca2+, cAMP, PKA, and MAP kinase activation have been 
shown to be involved in Arc gene induction [88]. The 
cytoskeletal protein, Arc, acts as a master regulator of 
synaptic plasticity and long-term memory formation via 
regulation by MAP kinase phosphorylation [89].

The results of some researchers indicate that late 
response factors such as brain-derived neurotrophic 
factor (BDNF) play a pivotal role in LTP induction and 
synaptic plasticity to influence memory formation, 
storage and retrieval [90]. 

Finally, it should mentioned that the expression of 
memory related genes are dependent on increased 
recruitment of histone deacetylase 2, an epigenetic 
enzyme, which forms a repressor complex with zinc 
finger transcription factor that regulates cognitive 
functioning [84,91,92]. The role of epigenetic enzymes 
in cognitive functioning has been reviewed elsewhere 
[93–97].

Cognitive processes are coupled to cerebral 
glucose metabolism by the T1R2+T1R3 receptor 
heterodimer

From Figure 2, it is obvious that T1R2+T1R3 signaling is 
coupled to cognitive processes via glucose metabolism. 

In addition to the signaling pathway triggered upon 
activation of taste receptor heterodimer as defined in 
Figure 1, T1R2+T1R3 can stimulate the functions of 
GLUT2 to increase glucose uptake. Increase in glucose 
uptake is associated with cerebral insulin signaling [32]. 
(Cerebral insulin can signal downstream to regulate the 
activities of early genes or SIRT1) [98,99]. Glucose, a 
crucial energy molecule, in the cytosol undergoes several 
metabolic reactions to produce ATP and other substances 
required for physiological processes in neurons. 
Increased level of cellular ATP promotes inhibition of 
potassium fluxes by the K-ATP channel. The level of ATP in 
the cell is constantly been monitored by energy sensors, 
in particularly, AMPK, which also interacts with SIRT1 to 
regulate the activities of early genes and the epigenome. 
Again, under the action of adenylate cyclase, ATP can 
be converted to cAMP, which in turn activates PKA. The 
activated PKA can interact with several effectors: It 
activates secretory granule exocytosis and transcription 
factors (Neuron A) [32,98,99]. The exocytosed molecules 
(e.g. neurohormones) diffuse to neighboring neurons to 

 
Figure 2: Mechanisms of coupling of T1R2+T1R3 signaling to cognitive network of the brain
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stimulate their cognate receptors, which trigger a series 
of cascades, culminating in increased cytosolic calcium, 
and subsequently, activation of certain membrane 
receptors, transcription factors, and the expression 
of early response genes that are involved in synaptic 
plasticity, memory and learning (Neuron B) [32].

The relationship between glucose metabolism and 
cognitive processes has been demonstrated in a couple 
of studies [51,100,101]. This functional cross-talk is 
possible due to the interaction between metabolic 
products of glucose and cognitive circuitry [102]. 
Metabolic signals have been shown to determine reward 
or emotion [103–106] from sugar ingestion. A recent 
study by Chan et al. [107] revealed that stimulation of 
sweet taste receptors by ingestion of non-nutritive, non-
calorie sweeteners stimulated glucose transport, incretin 
effect and insulin secretion. The result was enhancement 
of glucose metabolism. Similar results were reported 
by Murovets et al. [108], who showed an association 
between T1R3 defect and disorder of glucose transport 
in mice. Furthermore, it was shown that activation of 
brain sweet taste receptors was associated with incretin 
effect.

The different substances produced from glucose via 
series of metabolic processes–glycolysis and oxidative 
phosphorylations are involved in maintenance of 
cognitive systems [109]. Accumulating data have shown 
that metabolic coupling to cognition is believed to 
occur via lactate synthesis [65,80,110,111]. Neuronal 
metabolism, culminating in lactate production, is 
involved in LTP induction, synaptic plasticity, memory 
formation, which are thought to involve the activation 
of CREB, Arc and cofilin [112]. Relatively recent animal 
study demonstrated that defect in lactate transport is 
associated with disorder in memory formation [112]. 
Though lactate itself may not directly enhance cognition, 
its metabolic products in the TCA cycle and their 
activation of transcription factors may be necessary 
for lactate enhancement of cognitive functions [112]. 
Neuron-derived lactate appears to stimulate the 
expression of genes (Arc, c-Fos, and Zif268), which 
are associated with synaptic plasticity [113]. Indeed 
lactate may serve as substrate for the synthesis of 
synaptic or structural proteins such as Arc and cofflin, 
which may occur via transcription regulation [80]. In 
this regard, previous data have consistently shown that 
AMPK, CREB and mTOR are involved in both glucose 
metabolism and memory functions [71]. Importantly, 
these molecules are strongly involved in T1R2+T1R3 
signaling [32]. Furthermore, Yang et al. [113] reported 
that infusion of lactate resulted to potentiation of NMDA 
receptor activity, which is involved in LTP induction and 
memory formation. Data have consistently shown that 
AMPK and other metabolic sensors are involved in both 
glucose metabolism and cognitive functions [114]. Thus 
disorders involving metabolic sensors such as AMPK 
and mTOR can result to cognitive decline, and more 
importantly, have been associated with neuropsychiatric 

symptoms, including intellectual disability, specific 
neuropsychological deficits, and other behavioral and 
cognitive disorders [115].

CONCLUSION

The T1R2+T1R3 heterodimer is a functional sweet taste 
receptor that drives cerebral glucose metabolism and 
regulates cognitive functioning. The possible molecular 
mechanisms, linking neuronal sweet taste sensing to 
cognitive functioning involves multiple cross-talks 
with membrane glucosensors (GLUT2, KATP), cytosolic 
glucosensors and epigenetic factors (SIRT1, AMPK and 
mTOR), and transcription factors (EBP, CREB, egr, AP-1, 
Rel/NF-κB, Elk-1, c-Jun, Jun-B, Jun-D, c-fos, Npas4), and 
other signaling molecules: Ca2+, cAMP, protein kinases 
(PKA, PKC, MAP kinase). Activity dependent signaling by 
neuronal T1R2+T1R3 is critical for both metabolic and 
cognitive processes in health and disease.

FUTURE DIRECTIONS 

Since T1R2+T1R3 heterodimer signaling is related to 
cognitive functioning (Figure 2) [31,32], future research 
will investigate the effects of downstream signaling of 
neuronal sweet taste receptors on cerebral and global 
glucose homeostasis in health and disease. Specific 
attention will be given to diabetes mellitus, prediabetes, 
and brain diseases involving both cognitive decline 
and metabolic dysregulation (e.g. neurodegenerative 
disorders–Alzheimer, Parkinson diseases etc.). 
Further investigations into the effects of different 
pharmacological agents on sweet taste receptor 
functions can yield potential treatment options for 
brain diseases, involving both metabolic and cognitive 
dysregulation. 
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