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ABSTRACT

Despite the increased bacterial resistance of various antibiotics, there is a need to develop new antibiotic drugs with 
improved pharmacological profiles that can also overcome drug-resistant forms of bacteria. In this research project, 
we have identified and characterized a marine polysaccharide with the potential to be developed as an antibacterial 
agent. Sulphated polysaccharides isolated from the New Zealand mussel Perna canaliculus were used against five 
strains of bacteria and showed an antibacterial effect on three strains of gram-positive bacteria, Staphylococcus 
aureus, Enterococcus faecalis and Methicillin-resistant Staphylococcus aureus. The analysis of these marine 
polysaccharides confirmed the presence of glycosaminoglycan-like structures that contained antibacterial activity. 
This antibacterial activity was shown to be highly susceptible to fucose but not to chondroitin sulphated. This enzymatic 
and antibacterial activity pattern has not previously been seen in either marine or mammalian glycosaminoglycans. 
As such, our findings suggest that we have identified a new type of marine-derived fucose chondroitin sulphated–like 
polysaccharide with potent antibacterial properties.
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INTRODUCTION 

Glycoconjugate is a carbohydrate structure chemically 
bound to a non-carbohydrate structure as a side-chain; 
for instance, carbohydrates may be attached to lipids 
or proteins to make glycolipids and glycoproteins, 
respectively [1]. There is a specific subtype of 
glycoproteins known as proteoglycans (PG), which 
contain particular amino-sugars attached to the core 
protein as side-chains, known as glycosaminoglycans 

(GAGs) [2]. Typically, GAGs consist of long, unbranched 
heteropolysaccharides, with repeated disaccharide 
building blocks of uronic acid covalently attached 
to amino-sugar via glycosidic linkages [3]. GAGs are 
classified according to the repeated disaccharide building 
blocks into heparin, heparan sulphate (HS), chondroitin 
sulphate (CS), dermatan sulphate (DS), keratan sulphate 
(KS) and hyaluronan [4].

Heparin is composed of disaccharide units of iduronic 
acid (IdoA) covalently attached to glucosamine (GlcN) 
residues via (α 1→4) glycosidic linkage with different 
patterns of sulphation [5]. HS is structurally similar to 
heparin; however, the IdoA residues were epimerased 
at carbon-5 to glucuronic acid (GlcA), which is attached 
to glucosamine (GlcN) residues via (α 1→4) glycosidic 
linkage [6]. CS is expressed in various locations of the 
cells, including intracellularly, membrane-bound, and in 
the extracellular matrix; it is found to be bound to the 
protein, resulting in the formation of CS-proteoglycan 
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(CSPG). Structurally, GlcA is attached to galactosamine 
(GalN) makes up the CS typical repeating disaccharide 
building blocks with the chemical formula [→4 β-D-GlcA 
(1→3) β-D-N-GalNAc (1→] [7]. DS can be distinguished 
from CS in cell type and disaccharide building blocks, as 
DS is composed of epimerised GlcA carbon-5 forming 
IdoA attached to GalNH2, with the chemical formula as 
[→4 α-L-IdoA (1→3) β-D-GalNAc (1→] [7]. KS is found 
in nature in the extracellular matrix of certain tissues, 
such as cartilage, bone, and cornea. KS repeated building 
blocks are composed of galactose (Gal) and GlcNH2, 
which is chemically formulated as [→3) β-D-galactose 
(1→4) β-D-GlcNAc (1] [3]. KS is the only GAG type that 
does not acquire acidic residue, a common requirement 
seen in GAGs and can be found in cornea and participates 
in intracellular signalling and developmental [8]. 
Finally, hyaluronan was considered a unique GAG 
polysaccharide, as it is not attached to proteoglycan 
[9]. Various structural modifications such as branching 
and chain decoration with sialic acid would result in 
tremendous biological functions of polysaccharides, 
such as antiproliferative activities [10], antiviral activity 
[11], prevent Plasmodium falciparum Cytoadhesion [12].

Protein glycosylation is defined as the addition of sugar 
molecules to a protein structure [1]. These modifications 
change protein structure, function, and localisation 
using polysaccharides. In eukaryotic cells, the 
endoplasmic reticulum and Golgi apparatus, secretory 
and surface proteins would be post-translationally 
modified by adding specific carbohydrates either via 
N-linked or O-linked glycosylation. N-linked glycan 
chain is formed by adding a particular carbohydrate 
sequence to the polypeptide residues of a core protein 
resulting in N-glycosidic linkages. Thus, it occurs via 
the dolichol-phosphate pathway starting within the 
rough endoplasmic reticulum surface, followed by the 
sugar sequence added to the protein sequence. Dolichol 
phosphate is an essential pathway for glycoprotein 
glycosylation in the process of synthesizing N-linked 
glycans [13]. On the other hand, the O-linked glycan 
chain occurs in the Golgi apparatus. The addition of the 
sugars molecules to the O-linked sequence is cell type-
specific, which requires sugar transferase enzymes to 
transfer sugars to amino acid residues [14]. 

The marine life body is composed of proteins, 
glycoproteins, carbohydrates, amino acids, polyphenols, 
and mineral salts [15]. Marine life's carbohydrate 
structure would vary from its human counterpart, making 
it a potential source of biologically active carbohydrates 
[10], making it a subject of research interest [16]. 
Biologically active carbohydrates have been studied in 
pharmaceutical applications as therapeutic agents [17]. 
There are different compounds extracted from marine 
organisms, such as alginate, which is extracted from 
brown algae, chitosan that was used as a therapeutic 
agent to treat hypertension [18] and as an antifungal 
[19], fucoidan, which was extracted from several species 
of brown algae that used as an anti-cancer therapy [20], 
an anti-inflammatory [21] and antithrombotic [22]. In 

addition, carrageenan, found in red algae, is a sulphated 
galactan with antiviral activity against different viruses, 
such as human papillomavirus (HPV) and influenza A 
virus [20, 23].

The demand for new natural components that possess 
antimicrobials activity based on polysaccharides derived 
from marine organisms is increased [3,10,22,24,25]. A 
severe rise in antibiotic resistance occurred in bacterial 
species worldwide [26]. The response to antibiotics 
in infections with resistant anti-bacteria has been 
associated with higher morbidity and mortality rates, 
expensive treatment, and more extended hospital stays, 
which place a more significant burden on healthcare 
systems [27]. These facts make the increase in bacterial 
resistance one of the biggest healthcare challenges of 
the past hundred years. The ability of microorganisms 
to withstand antibiotics' effects is known as antibiotic 
resistance, which can be classified into two categories: 
natural (intrinsic) or acquired resistance [28]. 
Natural resistance naturally occurs in all bacterial 
organisms [29]. Inherent resistance coexisted with the 
resistance mediated by the bacterial outer membrane 
and active efflux [30]; however, acquired resistance 
could occur due to chromosomal mutations or as a 
result of external genetic determinants of resistance 
acquired through a plasmid or transposon containing 
resistance determinants [26]. In addition, multidrug-
resistant (MDR) bacteria are resistant to more than one 
antimicrobial group [31] that currently is considered 
a severely high risk to public health [32], which are 
commonly related to nosocomial infections in hospitals 
[33]. However, they have grown in prevalence as a 
source of community-acquired infection. The spread of 
MDR bacteria into the population is critical because it is 
linked to increased morbidity and mortality, leading to 
higher healthcare costs [34]. 

In this study, GAG-like polysaccharides were extracted 
from marine life known as P. canaliculus to evaluate its 
antimicrobial effects on three bacterial strains.

MATERIALS AND METHODS

Materials
Bacterial strains

Genetically characterized American Type Culture 
Collection (ATCC) isolates of E. faecalis ATCC (29212), S. 
aureus ATCC (25923), MRSA ATCC (43300), P. aeruginosa 
ATCC (15442), and E. coli ATCC (35218), were used in 
this study.

Culture media
Mueller-Hinton agar (Oxoid, CM0337) and Mueller-
Hinton broth media (Oxoid, CM0405) were used to 
determine the minimum inhibitory concentration (MIC) 
and the minimum bactericidal concentration (MBC), 
which prevented any growth of organisms.

Marine life
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In this study, polysaccharides were extracted from New 
Zealand mussels, Perna canaliculus (P. canaliculus), 
which were exported frozen to Saudi Arabia via Sea land 
company.

METHODS

Extraction of sulphated polysaccharides
GAG-like polysaccharides were extracted from P. 
canaliculus using the method according to Aldairi, et al. 
[10] and Kim et al. [35].

Glycosyl monosaccharide composition analysis
Glycosyl composition analysis was performed using Gas-
chromatography coupled with mass spectrometry (GC-
MS) of Per-O-trimethylsilyl (TMS) derivatives of methyl 
glycosides. According to Santander et al. (2013), acidic 
methanolysis was used to produce TMS derivatives from 
the sample. The GAG-like polysaccharides extracted from 
P. canaliculus (400 g) were freeze-dried with inositol. 
The dried sample was heated for 18 hours at 80 ℃ in 3M 
methanolic-HCl. The sample was treated with methanol 
and dried several times after cooling and drying under 
nitrogen. After that, the samples were combined with 
methanol, pyridine, and acetic anhydride before being 
left to sit for 30 minutes. These solvents were thoroughly 
dried out, and these solvents were dried down fully; Tri-
Sil (Pierce) was used to derivatise the sample at 80 °C 
for 30 minutes. The sample was then added to hexane, 
centrifuged, and the supernatant was removed and dried 
for examination. TMS methyl glycosides were analysed 
using a Supelco Equity-1 fused silica capillary column on 
an Agilent 7890A GC interfaced to a 5975C MSD (30 m x 
0.25 mm).

Preparation of standard inoculum
The target species were grown on Muller-Hinton agar 
medium for 24 hours at 37°C. The organism was then 
standardized to 0.5 McFarland using calibrated VITEK 
2 DENSICHEK and a single colony was collected using 
a sterile loop and inoculated in Muller Hinton broth to 
form a homogeneous suspension.

Determination of minimum inhibitory 
concentration (MIC) and minimum bactericidal 
concentration (MBC) of compounds (crude)
On micro titration plates, 100 µL of the dissolved pure 
crude compound at the highest concentration (10 mg/
mL) was mixed with 100 µL Mueller Hinton broth in the 
first well of the first column. Dissolved pure compounds 
were serially diluted by transferring 100 µL to the 
subsequent wells that contained 100 µL Mueller Hinton 
broth to produce the final concentration of (5, 2.5, 1.25, 
0.625, 0.312, 0.156, 0.078, and 0.039 mg/mL). Then, 
in the dilution series, 10 μL of 0.5 modified McFarland 
bacterial suspensions was introduced to each well 
containing 100 μl of dissolved compounds, as well as a 
positive control well, and mixed. As a negative control, 
Sterilized Mueller Hinton broth was used. Micro-dilution 
plates were then incubated at 37°C overnight. The MIC 

and MBC of each tested compound were recorded against 
five tested bacterial strains after being sub-cultured on 
a Muller Hinton agar plate according to the clinical and 
laboratory standards institute (CLSI M26-A, 1998).

Contact time assay
Using a micro titration plate, 100μl of the tested 
compound was added to the first column in a microtiter 
plate and 100μl Mueller Hinton broth to other wells. 
10μl tested bacterial strain that was suspended in 
Mueller Hinton broth and adjusted at 0.5 McFarland was 
mixed with tested compound. At the end of 30 seconds, 
then 10μl of the suspension transferred from the 1st 
well to the next well in the second column. This step 
was repeated after 60, and 90 seconds from zero time 
to the third, and fourth columns. A Mueller-Hinton broth 
without additions was used as a negative control and 
broth with tested bacterial strain for positive control. 
The plate was incubated at 37ºC for 24 hours. After the 
incubation period, sub-cultured on Muller Hinton agar 
plate according to clinical and laboratory standards 
institute (CLSI M26-A, 1998) by taken transferring 10μl 
from each well to Muller Hinton agar plates. All pates 
were incubated for 24 h at 37°C and to determine the 
killing time for tested bacterial strains. The presence 
of bacterial growth showed no effect of the tested 
compound against the bacterial strains during the 
exposure time of 90 seconds.

RESULTS

Monosaccharide composition analysis using TMS–
glycoside
Porcine bovine kidney HS-salts (Sigma, UK) was used as 
a standard to evaluate the crude GAG structure from P. 
canaliculus. The glycosyl residues from the bovine HS 
are shown to be composed of xylose (Xyl) (11.3 mol%), 
GlcA (25.1 mol%), Gal (17.6 mol%), GlcNAc (46 mol%) 
with a total amount of carbohydrate (9.4 µg). Regarding 
crude polysaccharide structure that derived from P. 
canaliculus, the monosaccharide composition analysis 
showed to be composed of GAG-like structure, anamely, 
Fuc, Xyl, GlcA, Mannose (Man), Gal, Glucose (Glc), GalNAc 
and GlcNAc (Table 1).

Antibacterial activity of the crude GAG-like 
structure against different bacterial strains
The antibacterial activity of the crude GAG-like structure 
against E. faecalis showed the effect of the extract as a MIC 
value of 5 mg/mL, and the bactericidal activity MBC value 
of 10 mg/mL. The antibacterial activity against S. aureus 
showed that the extract's potency was demonstrated at 
a MIC value of 0.625 mg/mL and the MBC value of 1.25 
mg/mL. The antibacterial activity against MRSA extract's 
potency was demonstrated at a MIC value of 1.25 mg/
mL and the MBC value of 2.5 mg/mL; however, no effect 
was determined against P. aeruginosa or E. coli (Table 2).

Contact time assay
This method showed no effect of crude GAG-like structure 
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Sample Glycosyl residue Mass (µg) Mol %1

HS standard

Xyl 0.8 11.3
GlcA 2.3 25.1
Gal 1.5 17.6

GlcNAc 4.8 46
SUM 9.4 100

Total carbohydrate % by weight 2.30%

Crude

Ribose (Rib) 0.95 3.8
Fuc 1.9 6.9

Xylose (Xyl) 0.66 2.6
Glucuronic Acid (GlcA) 2.5 7.6

Mannose (Man) 0.45 1.5
Galactose (Gal) 6.4 21.2
Glucose (Glc) 12.6 41.7

N-Acetyl Galactosamine (GalNAc) 3.5 9.6
N-Acetyl Glucosamine (GlcNAc) 1.9 5.1

SUM 30.9 100
Total carbohydrate % by weight 7.70%

1Values are expressed as mole percent of total carbohydrate. The total 
Mol% may not add up to exactly 100%.

Table 1: Total amount and mole percentage of monosaccharide 
composition of HS standard and crude GAG sample.

Organisms MIC MBC
E. faecalis 5 mg/mL 10 mg/mL
S. aureus 0.625 mg/mL 1.25 mg/mL

MRSA 1.25 mg/mL 2.5 mg/mL
P. aeruginosa Resistant Resistant

E. coli Resistant Resistant

Table 2: Assessment of the antibacterial activity of the crude GAG-
like against five ATCC bacterial strains using MIC and MBC.

Table 3: Assessment of the antibacterial activity of the crude GAG-
like against three bacterial strains, E. faecalis, S. aureus and MRSA.

Tested Strains
Contact Time

30 Sec 60 Sec 90 Sec
E. faecalis + + +
S. aureus + + +

MRSA + + +
Notes: (-) effective, (+) non effective

Abbreviation: Sec, seconds.

against three bacterial strains during the exposure time 
of 90 seconds, this indicates that it may need more time 
than 90 seconds (Table 3).

DISCUSSION

GAGs are long unbranched polysaccharides that play 
an essential role in several biological activities, such 
as anticancer [3], antiviral [36] and antithrombotic 
activities [37-39]. This study aimed to purify GAGs from 
marine life P. canaliculus and evaluate its effectiveness 
as an antibacterial agent against five bacterial strains. 
Regarding structural characterization, the GC/MS data 
suggested the presence of GlcA, GlcNAc, and GalNAc 
in the crude sample, which support the presence of 
GAG-like moiety within the polysaccharide chain. 
Thus, it would be different from the mammalian GAGs 
composed of either GlcNAc or GalNAc; however, common 
monosaccharide’s were determined, such as xylose, 

Glc, and Gal [1]. More interestingly, the results showed 
fucose residues within the chain, which would be linked 
to the GAG chain. This phenomenon has been shown in 
various GAG structures found in marine life known as 
fucosylated-GAGs [36,37,40] 

The literature suggested the presence of fucosylated-CS 
with potent biological Activity [37,41-44], in addition 
to HS, which also suggested having several biological 
functions [10,25,45,46]. However, the GAG-like structure 
from P. canaliculus was suggested to have both CS and HS 
monosaccharides residues within the chain. 

Referring to the biological function derived from GAG-
like from marine life, this study was aimed to evaluate 
their antibacterial effects.

The results showed that GAG-like structure deribed from 
P. canaliculus would act as antimicrobial agent as it shows 
high sensitivity to gram-positive bacteria, particularly 
MRSA with MIC 1.2 mg/mL, which is reported to be 
highly resistant to several antibiotics [47]. In addition to 
E. faecalis with MIC 5 mg/mL and S. aureus with MIC 0.6 
mg/mL.

The antibacterial effect of the crude GAG-like chain on 
MRSA shown to have greater substantial inhibitory effects 
than the ethyl-acetate extracts of Acacia aroma with MIC 
2.5 mg/mL [48]; in addition, β-asarone extracts from 
Acorus calamus rhizome showed MIC 2.5 mg/mL [49]. 
However, the Bauhinia kockiana tree from Malaysia and 
the ethanolic extracts of the Canarium patentinervium 
leaves both showed more potent antibacterial activities 
against MRSA with MIC 0.25 mg/mL [50].

The antibacterial effects of the crude GAG-like chain on S. 
aureus with MIC 0.6 mg/mL is more potent than that of 
olive oil polyphenol extracts with MIC 1.25 mg/mL [51]. 
However, the D. amoenum acetone extracts from Orchids 
showed potent antibacterial activity with MIC 0.39 mg/
mL and MBC 0.39 mg/mL. Moreover, methylglyoxal 
(MGO), a 1,2-dicarbonyl compound present in Manuka 
honey, has an effect on S. aureus with MIC 0.150 mg/
mL [52] and the Brocazine G extracts that derived from 
the mangrove penicillium showed potent antibacterial 
activity against S. aureus with MIC 0.25 μg/mL [53]. 

The antibacterial effects of the crude GAG-like 
polysaccharides extract against E. faecalis with MIC 5 
mg/mL showed a weaker effect than that of the extract of 
the Lamiaceae leaf, which shows a potent antimicrobial 
effect that is inhibited the growth of E. faecalis with MIC 
0.26 mg/mL [38]. Polyphenolic flavonoids demonstrated 
antimicrobial activity against E. faecalis with MIC 0.512 
mg/mL [54]. The leaf extract of Woodfordia floribunda 
showed potent antimicrobial activity against E. faecalis 
with MIC 0.256 mg/mL [38].

The gram-positive bacteria were more susceptible to 
the GAG-like polysaccharides than the gram-negative 
bacteria. This could be due to the nature of the 
bacterial structure, for instance, the cell wall with a 
high percentage of peptidoglycan (90–95%), as well as 
lipopolysaccharides and phospholipids, within the Gram-
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positive cell, which destroys the cell membrane or protein 
biosynthesis units (DNA and RNA). This susceptibility 
could also be due to a two-layer membrane, including the 
outer and the inner membrane. The thicker outer murein 
membrane is made up of lipoprotein, phospholipids, and 
mucopolysaccharides, whereas the inner membrane is 
made up of peptidoglycan (glycopeptide) (5–10%); thus, 
it would suggest the high percentage of lipids (90–95%) 
in the cell membrane characteristic of Gram-negative 
bacteria could explain this phenomenon. This outer 
membrane prevents certain medications and antibiotics 
from entering the cell. On the other side, Gram-positive 
bacteria may be more vulnerable to the extracts because 
of peptidoglycan. The outside layer of the Gram-negative 
bacteria is not an active permeability barrier to bioactive 
complexes. As a result, Gram-negative bacteria have a 
more complex cell wall than Gram-positive bacteria, 
which helps explain why Gram-negative bacteria are 
more resistant to antibiotics in general [55].

In this regard, highly sulphated GAG-like moieties have 
proven antibacterial effects; however, Gram-negative 
bacteria showed resistance to these effects. This could 
be due to the difference in bacterial structure, as Gram-
negative bacteria usually have a double wall [48], which 
may provide this resistance.
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