

Relationship between Sucralose Consumption and Serum Concentration of Glycosylated Hemoglobin in People with Type 2 Diabetes Mellitus without Complications

María del Carmen Cortés-López^{1, 2*}, Alfredo Larrosa-Haro^{2, 3}, Ruth Aracely De-Celis-Carrillo⁴

¹Consultorio de Medicina Familiar No. 3, Departamento Clínico, Unidad de Medicina Familiar No. 171, Instituto Mexicano del Seguro Social, Delegación Jalisco. Zapopan, Jalisco, México

²Programa de Doctorado en Ciencias de la Salud Pública, Departamento de Salud Pública, División de Disciplinas para el Desarrollo, Promoción y Preservación de la Salud, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Guadalajara, Jalisco, México

³Departamento de Clínicas de la Reproducción Humana, Crecimiento y Desarrollo Infantil, Instituto de Nutrición Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Guadalajara, Jalisco, México

⁴División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Delegación Jalisco. Guadalajara, Jalisco, México

DOI: 10.5455/jrmds.20186264

ABSTRACT

People who live with diabetes consume sucralose to control their blood glucose, but there is a controversy about this topic. To evaluate the relationship between sucralose consumption and serum concentration of glycosylated hemoglobin in people with Type 2 Diabetes Mellitus without complications. Cross-sectional study. Universe of 27 214 people with Type 2 Diabetes Mellitus without complications, users of a primary care unit from the Instituto Mexicano del Seguro Social in the state of Jalisco, Mexico. Simple probabilistic sample, n = 194 (p = 0,05). Propositive sampling. Selection criteria: adults of any gender and education level who agreed to participate. Variables: sociodemographic, anthropometric, clinical and dietary. Data collection instruments: Sociodemographic questionnaire, Tanita Fitscan© 585 scale, Tanita Fitscan© HR-200 stadiometer, Body Flex© tape-measure, Slim Guide© plicometer, Afinion© AS100 analyzer, and Frequency of Food Consumption Questionnaire. Information sources: clinical files and Mexican System of Equivalent Foods. Analysis: descriptive and inferential statistics ($p \le 0.05$). 194 people. Mean age 60.23 ± 11.16 , interval 28-93 years. 56.2% females and 43,8% males. Difference between glycosilated hemoglobin means: sucralose consumers 7,5% \pm 1,7%, no sucralose consumers $8,1\% \pm 2,1\%$ (p < 0,01). Association force "sucralose consumption/high glycosilated hemoglobin concentration" OR = 1,42 ($CI_{95\%}$ 0,63, 3,21). Lineal correlation "quarterly sucralose consumption/serum concentration of glycosylated hemoglobin" $\rho = -0.754$ ($R^2 = 0.0057$, p = 0.333). This results were partially consistent to the pre-existing literature. Studies with representative stratified samples and control of dietary variables are required for better results.

Key words: Diabetes Mellitus, Type 2; Non-nutritive Sweeteners; Hemoglobin A, Glycosylated; Cross-sectional Studies; Analytical Epidemiology

HOW TO CITE THIS ARTICLE: Mahsa Haji Mohammad Hoseini, Leila Ghanbari Afra, Hamid Asayesh, Mohammad Goudarzi, Monireh					
Ghanbari Afra, Relationship between Sucralose Consumption and Serum Concentration of Glycosylated Hemoglobin in People with Type					
2 Diabetes Mellitus without Complications, J Res Med Dent Sci, 2018, 6 (2):415-426, DOI: 10.5455/jrmds.20186264					
Corresponding author: María del Carmen Cortés López					
Received: 09/08/2017 Type 2 Accepted: 20/11/2017 problem	Diabetes Mellitus is a global public health in terms of its prevalence, incidence,				
INTRODUCTION	Mexico is especially important because of the				

genetic predisposition of its population due to their ethnic origin [2, 3]. Considering that this disease is currently incurable, the treatment's cornerstone is the glycemic control to delay the onset of its complications, which is achieved with an adequate diet, regular physical activity and pharmacological treatment [4]. In this context, diet is one of the most important elements because with the regulation of the intake of simple carbohydrates, we can reach the glycemic control [5], and because changing dietary habits has proven to be a great challenge in which most of the people fail [6]. So, the consumption of nonnutritive sweeteners, among which, sucralose is the most commonly used due to its physicochemical properties [7], has emerged as the most frequently used option, by these patients, regulate their consumption of simple to carbohydrates and their body weight, in an attempt to keep their blood glucose levels under control [8-10].

However, there is controversy regarding the consumption of sucralose and other non-nutritive sweeteners to achieve glycemic control. Although there are numerous studies in which their effects on human physiology have been explored [7-15], only some of these assess the possible relationship between sucralose consumption and serum glycosylated hemoglobin concentration as a gold standard to monitor glycemic control [9,10]. However, their results are inconclusive, so the controversy still persists today. Therefore, this study was conducted with the objective of assessing the relationship between sucralose consumption and serum glycosylated hemoglobin concentration in people with Type 2 Diabetes Mellitus without complications. This, with the ultimate purpose of strengthening scientific knowledge about this subject-matter, to provide new scientific evidence on the possible positive, negative or null influence of sucralose consumption on the blood glucose in people with Type 2 Diabetes.

MATERIALS AND METHODS

Design, site, temporality and universe

Applied, correlational, empirical and quantitative research [16], of analytical's cross-sectional design [17], achieved in the Unidad de Medicina Familiar No. 171 from the Instituto Mexicano del Seguro Social, in Jalisco state, México, from January 2016 to July 2017, in a universe of 27 214 people with Type 2 Diabetes Mellitus without complications of this disease.

Sample size and sampling method

A simple probabilistic sample of n = 194 people with Type 2 Diabetes Mellitus without complications of this disease was studied, which was obtained using the "statistical formula for calculating the sample size in studies to associate two quantitative variables" [18] $n = [((Z_1 - \alpha/2) + [(Z_1 - \beta))/(1/2 \ln[(1+r)/(1-r)])]^2 + 3$, for which a confidence level of 95% (Z = 1,96), a power of 80% ($\alpha = 0,05$, $\beta = 0,20$), and an estimated Pearson's correlation coefficient of 0,2 (r = 0,02) obtained from a pilot test were

0,2 (r = 0,02) obtained from a pilot test were considered. After an open invitation, to patients with Type 2 Diabetes Mellitus at the selected medical unit waiting room, a purposive sampling was carried out, in which those who satisfied the selection criteria were included in this study.

Inclusion and exclusion criteria

People aged 18 years or older, with Type 2 Diabetes Mellitus without complications of this disease, users of the medical unit, literate or illiterate with a literate caregiver, and those who agreed to participate in the study, through a signed informed consent letter, were included. At the same time, the subjects who fulfilling the inclusion criteria, had any of the following conditions were excluded: endocrinopathy, (hypothyroidism. Cushing's disease. etc). pregnancy. anemia. splenectomy. blood transfusion during the last three months prior to their participation in the study, or treatment with corticosteroids. No elimination criteria were formulated, since they do not apply in crosssectional studies [19].

Variables

Sociodemographic, anthropometric, clinical and dietetic variables were studied. The sociodemographics were: age, sex, education level, occupation, family type, marital status and monthly family income. The anthopometrics were: weight, height, body mass index, nutritional status according body mass to index, waist circumference, hip circumference, tricipital skin fold, bicipital skin fold, subscapular skin fold, suprailiac skin fold and body fat percentage. The clinics were: years from diagnosis, control of the disease, treatment, physical activity, glycosylated hemoglobin, glucose, total colesterol, triglycerides, creatinine and glomerular filtration rate. The dietetics were: average daily percentage of carbohydrates, average daily percentage of proteins, average daily percentage of lipids, and quarterly, average monthly and average daily of calories, non-nutritive sweeteners, sucralose, aspartame, acesulfame-K and steviosides. For statistical inferences purposes, the independent variable was sucralose consumption during the three months measured, the dependent was serum concentration of glycosylted hemoglobin, and the rest were considered sample's descriptors.

Information sources, instruments and procedures

The sociodemographic, anthropometric and clinical data were collected in a self-made questionnaire, which was not validated by its descriptive-compilation nature [20]. The information sources or instruments used, as well as the procedures followed by the variables measurement during the study, are shown in Table 1. Additionally, it is necessary to point out that the "Frequency of Food Consumption Questionnaire" estimates the individual food intake according to the number of times a specific type of food is eaten during a defined period [21], in this study, such instrument consisted of 24 items divided into two sections, one of 16 items with the food groups according to their classification in the Mexican System of Equivalent Foods [22], and other of 8 items which listed the main foods containing non-nutritive sweeteners according to their label. These procedures were achieved with prior authorization of the study, after which identification of potential participants was carried out with the help of the medical assistants, who provided daily lists of patients to identify those who atended a control appointment for Type 2 Diabetes Mellitus. Once identified the candidates, it was confirmed that they satisfied the selection criteria and they were invited to participate in the study. Those who agreed to participate signed the informed consent letter, from there on, data collection was initiated according to the procedures described (Table 1). The anamnesis was performed in the waitingroom, while physical examinations and reviews of clinical files were completed in a medical office designated by the clinic manager. On each occasion, the participants were given a monthly appointment, to have a second and third "Frecuency of Food Consumption Questionnaire".

These procedures were routinely performed to cover the estimated sample size.

Statistical analysis plan

The statistical analysis was carried out in four stages: descriptive, comparative, associative and correlational. In the descriptive analysis. frequency and central tendency and dispersión measures were obtained for the qualitative and quantitative variables, respectively. In the comparative analysis, two groups were established, sucralose' consumers and nonconsumers, based on which the rest of variables were compared, for wich Z test (z) was used to compare two proportions, Ji squared (χ^2) to compare more tan two proportions, and Student's T test (*t*) to compare two means, according to each case [23]. In the associative analysis, the association "sucralose force consumption/uncontrolled Type 2 Diabetes Mellitus" was measured considering "uncontrolled Type 2 Diabetes Mellitus" as a high percentage of glycosylated hemoglobin, using an odds ratio (OR) with 95% confidence interval ($p \le 0,05$), for which the "Case" as uncontrolled Type 2 Diabetes Mellitus, the "Control" as controlled Type 2 Diabetes Mellitus, the "Exposed" as sucralose intake and the "Not exposed" as sucralose nointake were defined. Finally, in the correlational analysis, the correlation between quarterly sucralose consumption and serum concentration of glycosylated hemoglobin was determined by mean of Pearson's (r) or Spearman's (ρ) coefficient according correlation to the distribution type of independent variable. determined with Kolmogórov-Smirnov test (K-S) [24]. This test was given a 95% confidence ($p \leq$ 0,05), using SPSS© 20 for the Microsoft© Windows[©] Operative System.

Ethical considerations

According to Mexican federal legislation on health research valid at the time of the study [25], the study was classified as a minimum risk for participants by the National Commissions of Ethics and Scientific Research of the Instituto Mexicano del Seguro Social, who approved the research protocol, granted the federal registry number R-2015-785-045, and authorized the use of institutional resources to perform glycosylated hemoglobin tests to meet study's objectives.

María del Carmen Cortés López et al

Groups of variables	Variables	Information sources or instruments	Measurement procedure
Sociodemographic	Age, sex, education level, occupation, family type, civil status and monthly family income	Direct anamnesis to the person or indirect anamnesis throught the caregiver	This data was obtained through direct questioning of the patient, or indirectly to their primary caregiver in the waiting room of the medical unit. This questionnaires took place after the screening of the candidates and the acceptance to participate in the study, as well as the signing of the informed consent letter
	Weight	Tanita Fitscan© 585 scale	This was carried out on a stable and flat floor. The participants were instructed to remove everything from their feet, get on the scale with one foot on each side, to remain steady, to look forward and keep their arms on either side of the body during the measurement
	Height	Tanita Fitscan© HR-200 stadiometer	Subjects were asked to be barefoot, without hats or high hairstyes. They were asked to look forward, with their feet together, heels against the stadiometer and straight knees. The slide was lowered until it contacted the participants head and they were asked to take a deep breath and stand straight
	Waist circumference	Body Flex© tape- measure	Each subject was measured with the clothes raised to uncover the skin, at the end of a normal exhalation, with the arms relaxed on each side. The perimeter was obtained between the middle axillary line and the point between the lower part of the last rib and the highest part of the hip
	Hip circumference	Body Flex© tape- measure	This was measured on bare skin, with the arms relaxed on each side. The perimeter was obtained in the widest place above the glutes
Anthropometric	Arm circumference	Body Flex© tape- measure	This was measured on the uncovered skin, with the arms relaxed on each side, from behind the subject, on the dominating arm, at the midpoint between the lower part of the olecranial process of the ulna and the acromial process of the scapula
	Tricipital skinfold	Slim Guide© plicometer	This was measured from behind the subject with the arm flexed at 90°, the elbow close to the side in the dominant arm, in the posterior region of this arm, at the midpoint between the lower part of the olecranon process of the ulna and the acromial process of the scapula, pulling out the skinfold with the thumb and index finger of the left hand, to then place the plicometer
	Bicipital skinfold	Slim Guide© plicometer	This was measured next to the participant, with the arm in extension and the elbow near the side, in the anterior region of the dominant arm, on the biceps muscle, in the middle circumference of the arm, pulling out the skinfold over the midpoint of the arm where the plicometer was placed.
	Subescapular skinfold	Slim Guide© plicometer	This was measured behind the subject, one centimeter below the lower angle of the scapula, with the dominant arm of the participant behind the back, pulling out the skinfold diagonally over a 45° angle, the calipers of the plicometer were applied one centimeter away from the position
	Suprailiac skinfold	Slim Guide© plicometer	This was measured facing the subject, locating a point on the anterosuperior iliac crest and the median axillary line, a diagonal skinfold was pulled out on the highest point of this arc
Years from diagnosis, control of the disease, treatment, physical activity, glucose, total colesterol, Clinical triglycerides, creatinine and glomerular filtration		Clinical files	They were obtained by reviewing the clinical records of the participants, through the Electronic Clinical File System, accessing from a computer located inside one of the offices in the medical unit where the study was conducted
	Glycosylated hemoglobin	Afinion© AS100 analyzer	This was obtained by a blood sample analysis, at the beginning of the study and after three months of follow up. The blood sample was obtained and processed in the clinical laboratory of the medical unit, as a separated batch of the blood samples taken and routinely carried out during a usual day of the department
Dietetic	Daily percentage of carbohydrates, proteins, lipids and calories	Frequency of Food Consumption Questionnaire and Mexican System of Equivalent Foods	They were obtained in the corresponding units for each case, performing arithmetically the conversion of the equivalent units obtained with the "Frequency of Food Consumption Questionnaire", according to the equivalents described in the Mexican System of Equivalent Foods. For the convertions, a spreadsheet was prepared with Microsoft© Excel© version 2016 for Microsoft Operating System© Windows©, licensed for particular use
	Non-nutritive sweeteners intake	Frequency of Food Consumption Questionnaire and food labels	They were obtained in the corresponding units for each case, performing arithmetically the conversion of the units obtained in the "Frequency of Food Consumption Questionnaire", according to the amounts of non-nutritive sweetener described in the labels of the reported foods. For the convertions, a spreadsheet was prepared with Microsoft© Excel© version 2016 for Microsoft Onerational System© Windows© Licensed for narticular use

Source: Compiled by authors

RESULTS

194 subjects with Type 2 Diabetes Mellitus without complications were studied. Their qualitative and quantitative characteristics are shown in Tables 2 and 3, respectively, in which it is observed that, the sample's majority was composed of elderly women, married, with elementary educational level, housewives, nuclear family and medium socioeconomic level, with

unhealthy anthropometric characteristics, mostly overweight, with approximately 10 years as carryng the disease. This disease was controlled according to concentration of glycosylated hemoglobin, but with high seric levels of glucose and triglycerides, with pharmacological treatment, based on oral hypoglycemic agents and light physical activity, with a balanced diet within normal limits and a daily intake of non-nutritive sweeteners within the recommended limits.

able 2: Frequency distribution of qualitative characteristics of the participants

Group	Variables	Characteristics	Frequency	Percentage (%)
	Sou	Female	109	56,2
	Sex	Male	85	43,8
		Young adults	84	43,3
	Age	Older adults	110	56,7
		Single	11	5,7
		Never married	11	5,7
	Civil status	Married	131	67,5
	Civil status	Widowed	28	14,4
		Divorced	4	2,1
		Separated	9	4,6
		Illiterate	12	6,2
		Literate	38	19,6
		Elementary school	47	24,2
		Secondary school	35	18,0
	Educational level	High school	25	12,9
Sociodemographic		Technical career	6	3,1
characteristics		Degree	28	14,4
		Postgraduate degree	3	1,5
		Housewife	85	43,8
		Employee	27	13,9
		Pensioner	27	13,9
		Any	12	6,2
	Ocupation	Professional	6	3,1
		Retired	6	3,1
		Worker	30	15,5
		Religious minister	1	0,5
	Family type	Nuclear	101	52,1
		Single-parent	10	5.2
		Extensive and composed	22	11.3
		Extensive	58	29,9
		Live alone	3	1.5
		Normal weight	34	17,5
	Nutritional status	Overweight	81	41,8
Antrophometric characteristics		Obesity class I	47	24.2
· · F		Obesity class II	18	9.3
		Obesity class III	14	7,2
	Controled Type 2 Diabetes	No	79	40,7
	Mellitus	Yes	115	59.3
Clinical characteristics		Hypoglycemic agents	132	68,0
		Insulin	21	10,8
	Treatment	Diet	8	4,1
		Hypoglycemic agents and insulin	33	17,0
		Any	9	4.6
	Physical activity	Light	166	85.6
	1 11y 51001 0001 v 10y		100	05,0

Source: Compiled by authors with data collected

Group Variables		Average	Standard	Minimum	Maximum
		()))	Deviation	value	value
Sociodemographic	Age (years)	60,23	11,16	28	93
characteristics	Monthty family income (USD)*	383,81	376,77	/5,72	2 163,47
	Weight (Kg)	78,7	16,3	47,5	129,0
	Height (m)	1,6	0,1	1,39	1,95
	Body mass index (Kg/m ²)	29,9	5,6	18,7	49,7
	Waist circumference (cm)	102,1	12,7	73,3	144,0
Anthronometric	Hip circumference (cm)	109,8	12,2	88,0	159,0
characteristics	Middle arm circumference (cm)	32,9	4,3	18,0	50,0
	Tricipital skinfold (mm)	18,8	7,5	6,0	55,0
	Bicipital skinfold (mm)	11,5	6,0	3,0	33,5
	Subescapular skinfold (mm)	22,2	7,2	8,0	45,0
	Suprailac skinfold (mm)	20,0	6,0	7,0	40,0
	Body fat percentage (%)	34,2	6,3	18,6	45,4
	Time from diagnosis (años)	10,4	8,8	1	60
	HbA _{1c} in young adults (%) [†]	7,8	2,0	4,8	13,5
	HbA_{1c} in older adults (%) [†]	7,4	1,5	5,0	12,8
	Seric glucose (mg/dl)	162,6	75,1	70	500
Clinical characteristics	Cholesterol (mg/dl)	195,2	41,2	96	334
	Triglycerides (mg/dl)	191,9	133,1	49	1,177
	Creatinine (mg/dl)	0,8	0,2	0,3	1,9
	Glomerular filtration rate (ml/min/1.73m ²)	95,0	14,4	57,6	136,8
	Carbohydrate intake (%) [‡]	58.3	9.3	29.6	78.6
	Protein intake (%) [‡]	18.3	4.5	10.5	36.6
	Lipid intake (%) [‡]	22.3	6.7	6.4	43.4
	Daily calorie intake (cal) [‡]	1 466.0	647.4	579.7	3 827.2
	Monthly calorie intake (cal)§	43 981.2	19 421.8	17 391.5	114 816.3
		131		,.	,
	Quarterly calorie intake (cal)	943.6	58 265,4	52 174,5	344 448,9
	Daily NNS intake (mg) [‡]	44.8	94.7	0.0001	657.3
	Monthly NNS intake (mg)§	1 344.1	2 842.3	0.0040	19 719.2
	Ouarterly NNS intake (mg)	4 032.2	8 527.0	0.0120	59 157.5
	Daily sucralose intake (mg) [‡]	2.7	7.8	0.0001	77.7
Dietetic characteristics	Monthly sucralose intake (mg) [§]	80.8	233.7	0.0020	2,329,7
	Quarterly sucralose intake (mg)	242.3	7 001.0	0.0060	6 989.0
	Daily aspartame intake (mg)‡	395	58.2	0.0018	313.9
	Monthly aspartame intake (mg)	1 185 7	1 747 2	0.0530	94179
	Quarterly aspartame intake (mg)	3 5 5 7 2	5 241 7	0.1590	28 253 6
	Daily acosulfame-K intake(mg)	33.9	56.8	0,1000	3285
	Monthly acesulfame-K intake (mg)	1 017 4	1 704 3	0.0350	9,853,9
	Quarterly accoultance K intake (mg)	3 052 2	5 112 9	0.1050	29 561 6
	Daily stopiosidos intako (mg) ⁺	0.2	17	0,1030	12.0
	Monthly staviosidas intaka (mg)	0,3	<u>1,/</u> 51.2	0,0003	260.0
	Ouarterly steviosides intake (mg)	25.9	154.0	0,000	1 080 0

Table 3: Central tendency and dispersion measures of quantitative characteristics of the participants

*Data collected in Mexican pesos (MXN), converted into US dollars (USD) according to the exchange rate of January 27, 2018. [†]Upon completion of the investigation. [‡]Daily average. [§]Monthly average. **NNS =** Non-Nutritive Sweeteners. **Source:** Compiled by authors with data collected.

Group	Variables	Characteristics	Sucralose	Sucralosa non-	р	
Group			consumers	consumers	value	
	Sex	Female	98 (58,7%)	11 (40,7%)	0_001*	
		Male	69 (41,3%)	16 (59,3%)	0,081	
	Age	Young adults	72 (43,1%)	12 (44,4%)	0.007*	
	Age	Older adults	95 (56,9%)	15 (55,6%)	0,897	
		Single	9 (5,4%)	2 (7,4%)	0,728†	
		Not married	10 (6,0%)	1 (3,7%)		
	Civil status	Married	111 (66,5%)	20 (74,1%)		
	civii status	Widowed	26 (15,6%)	2 (7,4%)		
		Divorced	4 (2,4%)	0 (0%)		
		Separated	7 (4,2%)	2 (7,4%)		
		Illiterate	10 (6,0%)	2 (7,4%)		
		Literate	32 (19,2%)	6 (22,2%)	_	
		Elementary school	40 (24,0%)	7 (25,9%)	_	
	Educational	Secondary school	30 (18,0%)	5 (18,5%)		
	level	High school	23 (13,8%)	2 (7,4%)	- 0,949	
Sociodemographic		Technical career	5 (3,0%)	3 (11,1%)		
characteristics		Degree	25 (15.0%)	1 (3.7%)		
		Postgraduate degree	2 (1.2%)	1 (3.7%)		
		Housewife	74 (44.3%)	11 (40.7%)		
		Employee	23 (13.8%)	4 (14.8%)	_	
	Ocupation	Pensioner	24 (14.4%)	3(11.1%)	0,932† 	
		Any	10 (6.0%)	2 (7.4%)		
		Professional	5 (3.0%)	1 (3.7%)		
		Retired	6 (3.6%)	0 (0%)		
		Worker	24 (14 4%)	6(22.2%)		
		Beligious minister	1 (0.6%)	0 (0%)		
		Nuclear	87 (52 1%)	14 (51 9%)	0,546†	
		Single narent	7 (4 2%)	3 (11 1%)		
	Family type	Extended composited	20 (12 0%)	2 (7.4%)		
	ranny type	Extended	50 (29.9%)	8(29.6%)		
		Live alone	2 (1.9%)	0 (0%)		
	Nutritional status	Normal weight	20 (10 00/)	4 (14 90/)	0,552†	
		Overweight	66 (39 5%)	4 (14,0%)		
Antropometric characteristics		Obesity class I	42 (25 1%)	5 (19 5%)		
		Obesity class I	17 (10 204)	1 (2 704)		
		Obesity class II	12 (7 204)	1(3,7%) 2(7.40%)		
	Controllad	No	12 (7,2%) 66 (20 E04)	2 (7,4%)		
		No	101 (60 50/)	13 (40,1%)	- 0.397*	
	12DW	Iest Iumoglugomia agonta	101 (60,5%)	14 (51,9%)		
Clinical characteristics		Hypoglycennic agents	115 (08,9%)	2 (7.40/)	0.50(+	
	Treatment	Dist	7 (4 20/)	2 (7,4%)		
		Diet	7 (4,2%)	1 (3,7%)	0.586†	
		Hypoglycemic agents and	26 (15,6%)	7 (25,9%)		
			2 (1 00/)	6 (22.20/)		
	Dharakarl	Ally	3 (1,8%)	0 (22,2%)		
	Physical activity	Light	148 (88,6%)	18 (66,7%)	0.000†	
		Moderate	16 (9,6%)	3 (11,1%)		

 Table 4: Comparison of qualitative characteristics between sucralose consumers and non-consumers

*According to Z test (z). †According to Ji square test (χ^2). *Young adults with HbA_{1c} \leq 7% and older adults with HbA_{1c} \leq 8%. **T2DM** = Type 2 Diabetes Mellitus. **Source:** Compiled by authors with data collected.

		Sucralose	Sucralose non-	n- p*	
Group	Variables	consumers	consumers		
_		$(n = 167; \tilde{x} \pm s)$	$(n = 27; \tilde{x} \pm s)$	value	
Sociodemographic	Age (years)	60,46 ± 11,20	58,78 ± 11,04	0,000	
characteristics	Monthty family income (USD) [†]	390,19 ± 390,38	336,97 ± 258,15	0,000	
	Weight (Kg)	78,8 ± 16,4	77,8 ± 15,6	0,000	
	Height (m)	1,62 ± 0,11	1,67 ± 0,10	0,000	
	Body mass index (Kg/m ²)	30,17 ± 5,68	28,20 ± 4,94	0,000	
	Waist circumference (cm)	101,6 ± 12,7	106,7 ± 11,6	0,000	
	Hip circumference (cm)	109,7 ± 12,3	110,7 ± 11,6	0,000	
Antropometric characteristics	Middle arm circumference(cm)	33,0 ± 4,3	31,9 ± 4,8	0,000	
	Tricipital skinfold (mm)	18,9 ± 7,7	17,6 ± 6,1	0,000	
	Bicipital skinfold (mm)	11,4 ± 5,7	12,4 ± 8,4	0,000	
	Subescapular skinfold (mm)	22,2 ± 7,3	22,7 ± 7,0	0,000	
	Suprailiac skinfold (mm)	20,1 ± 5,8	19,3 ± 7,5	0,000	
	Body fat percentage (%)	34,5 ± 6,2	31,2 ± 6,8	0,000	
	Time from diagnosis (years)	10,4 ± 8,8	11,1 ± 9,0	0,000	
	HbA _{1c} in the entire sample (%) [‡]	7,5 ± 1,7	8,1 ± 2,1	0,000	
	HbA _{1c} in young adults (%) [‡]	7,64 ± 1,91	8,71 ± 2,61	0,093	
	HbA _{1c} in older adults (%) [‡]	7,31 ± 1,53	7,68 ± 1,60	0,389	
Clinical characteristics	Seric glucose (mg/dl)	160,3 ± 71,9	176,7 ± 93,2	0,000	
Clinical characteristics	Cholesterol (mg/dl)	193,5 ± 40,0	207,6 ± 48,0	0,000	
	Triglycerides (mg/dl)	192,2 ± 137,9	190,6 ± 92,8	0,000	
	Creatinine (mg/dl)	0,74 ± 0,19	0,90 ± 0,35	0,000	
	Filtration glomerular rate	94,9 ± 14,6	96,1 ± 13,7	0,000	
	$\frac{(m/min/1.73m^2)}{(m/min/1.73m^2)}$	FFO + O O		0.000	
	Larbonydrate intake (%) [§]	57,9±9,3	58,5% ± 15,5%	0,000	
Dietetic characteristics	Protein intake (%)s	18,5 ± 4,6	16,1% ± 5,0%	0,000	
	Lipid intake (%) [§]	22,4 ± 6,6	20,6% ± 8,6%	0,000	
	Daily calorie intake (cal) [§]	1 457,9 ± 631,5	1 525,0 ± 766,6	0,000	
	Daily NNS intake (mg)§	46,0 ± 95,9	3,5 ± 3,9	0,000	

Table 5: Comparison of quantitative characteristics between sucralose consumers and non-consumers

n = Sample size. \tilde{x} = Sample's arithmetic mean. **s** = Sample's standard deviation. *According to T test (*t*). †Data collected in Mexican pesos (MXN), converted in US dollars (USD) according to the exchange rate of January 27, 2018. ‡Upon completion of the investigation. *Daily average. NNS: Non-nutritive sweeteners. **Source:** Compiled by authors with data collected.

Tables 4 and 5 show the comparative analysis of qualitative and quantitative sample characteristics respectively, in which it is observed that, in terms of qualitative characteristics, only a statistically significant difference was found (p < 0,05) regarding to physical activity, which was more frequently practiced among sucralose consumers. In regard to the quantitative characteristics, statistically significant differences were found (p < 0,05) in practically all attributes in sucralose consumers which had greater age, greater monthly family income, weight and body mass index, and had a greater arm circumference average, and a greater tricipital and suprailiac skinfold, body fat percentage, serum level of triglycerides and daily consumption of proteins, lipids and non-nutritive sweeteners. At the same time, they had been disease carriers for a shorter time since their diagnosis, although, they were shorter, had a smaller waist and hip circumference, a lower bicipital and subescapular skinfold as well as serum glucose level, cholesterol, creatinine, glomerular filtration rate, daily carbohydrate and calories intake.

It was found that mean serum level of glycosylated hemoglobin was significantly lower (p < 0,05) in sucralose consumers compared to non-consumers, however, when stratifying this analysis based on the age group, no statistically significant differences were found (p < 0,05) comparing young and older adults, sucralose consumers and non-consumers.

The measurement of the association force "sucralose consumption/high glycosylated hemoglobin concentration" obtained an OR = 1,42 (CI_{95%} 0,63, 3,21).

Finally, Figure 1 shows the linear correlation "quarterly sucralose consumption/glycosylated hemoglobin serum concentration", where a negative correlation is observed, but this was not statistically significant ($\rho = -0.754$, R² = 0.0057, p = 0.333), the independent variable (quarterly sucralose consumption) didn't follow a normal distribution (K-S = 4.715, p = 0.000).

Journal of Research in Medical and Dental Science | Vol. 6 | Issue 2 | March 2018

Figure 1: Linear correlation "sucralose quarterly consumption/serum concentration of glycosylated hemoglobin"

DISCUSSION

This is the first study known by the authors in relationship between which the sucralose consumption and seric concentration of glycosylated hemoglobin has been evaluated in people with Type 2 Diabetes Mellitus without complications. Several studies exist about sucralose effects over humans [7-15], only a few evaluate the possible relationship between its consumption and seric concentration of glycosylated hemoglobin [9-10]. However, these include populations with any diabetes' type, with and without complications, so the comparison of characteristics of these studies with ours is limited. In this context, the population's sociodemographic of this study and referents [9-10] are similar in age and gender, but there are no references aganinst to compare education level. occupation, family type, marital status and family monthly income, hence we can discuss little about it, beyond the fact that sociodemographic sample's profile is consistent with the national [2,3] and worldwide reports [1,7-15].

Regarding anthropometric characteristics, only one reference explores them [10], it is limited to body mass index and waist circumference, reporting means of 27,03 Kg/m² and 92,75 cm, respectively, which were lower than those found in this study, where population was obese, whereas referred only as overweight [10], without referring to other anthropometric measures of this research that support this conclusion. When it came to clinical characteristics, only one group of authors consulted explored them [10], and they

reported a glycosylated hemoglobin mean of 8,25% (without distinguishing between young and older adults), total cholesterol of 179,3 md/dl, and triglycerides of 134 mg/dl, in contrast to a glycosylated hemoglobin mean of $7.8\% \pm 2.0\%$ for young adults and $7,4\% \pm 1,5\%$ for older adults, total cholesterol of 195,2 mg/dl, and triglycerides of 191,9 mg/dl, without cases of renal failure in this study, so that there are no important clinical differences in blood chemistry between populations, beyond inclusion [10] or exclusion (this study) of people with chronic renal failure or other diabetes complications.

In regards to dietary characteristics, only one reference compiled information of this type [10], they only reported daily caloric consumption and simple carbohydrates, of 1 644,8 cal/day and 45 g/day, respectively, in contrast to 1 466 cal/day and 58,3 g/day in this study. Therefore, it can be argued that the diet in this study was better compared with the one in question.

Finally, referring to consumption of non-nutritive sweeteners, Grotz [9] reports a daily intake of sucralose of 667 mg/day, while Romo-Romo [10] reports a daily average intake of non-nutritive sweeteners of 80 mg/day, in contrast to means of 2,7 mg/day of sucralose and 44,8 mg/day of general non-nutritive sweeteners obtained in this study, so, both daily average consumptions were lower in the population of this study. On the other hand, regarding the possible relation between sucralose consumption and serum glycosylated hemoglobin concentration in the population with diabetes, with respect to differences between glycosylated hemoglobin levels according to whether sucralose was consumed or not, Grotz [9] reported a statistically significant difference (p = 0,020) between sucralose consumers and nonconsumers, in favor of the first, after 13 weeks of diet, which was corroborated in this study in the general population, but the observation didn't persist when stratified by age groups.

Meanwhile, in terms of correlation between sucralose consumption level and serum glycosylated hemoglobin concentration, Romo-Romo [10] reported a statistically significant positive correlation (p = 0,023) between the general level of non-nutritive sweetener consumption (the majority was sucralose) and the serum concentration of glycosylated hemoglobin, while in this study, a negative correlation was observed without statistical significance between

the level of sucralose consumption (in particular) and the serum concentration of glycosylated hemoglobin. While there were no references that measured the association force "consumption of sucralose/high glycosylated hemoglobin concentrations" or another similar one, since, in this study, an association was obtained without statistical significance. In this ideas' order, the differences observed between the findings in this research and what was reported by the consulted authors [9,10], could be explained by the methodological differences of these studies, such as the general comparison without considering the age group, the inclusion of people with any type of Diabetes Mellitus and with complications of this disease. Another difference is the application of a single measurement of the consumption of non-nutritive sweeteners, which could imply an overestimation of the average daily consumption of these substances.

Finally, it should be considered that the results of this study may be influenced by memory bias of its participants, since it is recognized that dietary surveys may imply underrreporting due to the Hawthorne's effect. Therefore, sucralose and food consumption should be controlled in future studiesin order to obtain free measurements of this bias. At the same time, the results are limited by the heterogeneity of the sample studied, so in future studies it is suggested to study homogeneous samples, stratified according to variables with influence on glycaemia, as age, evolution time, resistance to insulin, among others for which it is recommended to conduct multicentric studies.

CONCLUSIONS

It can be concluded that, in general terms, in this study, a statistically significant relationship between sucralose consumption and serum glycosylated hemoglobin concentration in people with Type 2 Diabetes Mellitus without complications was not found. Prospective studies with control of dietary variables and representative stratified homogeneous samples are required to obtain better conclusions about this subject-matter.

Acknowledgments

The authors thank the reviewers assigned to this manuscript for their valuable contributions to improving its quality until it is published.

REFERENCES

- 1. World Health Organization. Diabetes [Internet]. Geneva: WHO; 2015 [updated 2017 Nov 14; cited 2018 Feb 25]. Available from: http://bit.ly/2zldBZg
- Gutiérrez JP, Rivera-Dommarco J, Shamah-Levy T, Villalpando-Hernández S, Franco A, Cuevas-Nasu L, et al. Encuesta Nacional de Salud y Nutrición 2012. Resultados Nacionales [Internet]. Cuernavaca: Instituto Nacional de Salud Pública; 2012 [cited 2018 Feb 21]. Available from: http://bit.ly/2jhuVaS
- Hernández-Ávila M, Gutiérrez J, Reynoso-Novorón N. Diabetes mellitus en México. El estado de la epidemia. Salud Publica Mex [Internet]. 2013 [cited 2018 Feb 25];55(Sup.2), S129-36. Available from: http://bit.ly/1PogY4C
- 4. Zavala-González MA, Lima-Ortiz R. Gallegos-Aguilar MM. Utilización de hipoglucemiantes orales en una unidad médica familiar de Comalcalco, Tabasco, México, 2013. Rev Mex Cienc Farm [Internet]. 2014 [cited 2018 Feb 25];45(3):81-5. Available from: http://bit.ly/2GBikJF
- Instituto Mexicano del Seguro Social. Guía de práctica clínica. Tratamiento de la Diabetes Mellitus Tipo 2 en el primer nivel de atención. [Internet]. México D.F.: Centro Nacional de Excelencia Tecnológica en Salud; 2014 [cited 2018 Feb 25]. Available from: http://bit.ly/2CdBI1h
- Terechenko-Luhers NS, Baute-Geymonat AE, Zamonsky-Acuña JN. Adherencia al tratamiento en pacientes con diagnóstico de Diabetes Mellitus Tipo II. Biomedicina [Internet]. 2015 [cited 2018 Feb 25];10(1):20-33. Available from: http://bit.ly/2sLBCd3
- Schiffman SS, Rother KI. (2013). Sucralose, a synthetic organochlorinensweetener: overview of biological issues. J Toxicol Environ Health B Crit Rev [Internet]. 2013 [cited 2018 Feb 25];16:399-451. Available from: http://bit.ly/2B8JC7x
- Fagherazzi G, Vilier A, Sartorelli D, Lajous M, Balkau B, Clavel-Chapelon F. (2013). Consumption of artificially and sugarsweetened beverages and incident type 2 diabetes in the Etude Epidémiologique

Journal of Research in Medical and Dental Science | Vol. 6 | Issue 2 | March 2018

auprès des femmes de la Mutuelle Générale de l'Education Nationale-European Prospective Investigation into Cancer and Nutrition cohort. Am J Clin Nutr [Internet]. 2003 [cited 2018 Feb 25];97:517-23. Available from: http://bit.ly/2hPKPsN

- Grotz V, Henry R, McGill J, Prince M, Shamoon H, Trout J, et al. Lack of effect of sucralose on glucose homeostasis in subjects with type 2 diabetes. J Am Diet Assoc [Internet]. 2003 [cited 2018 Feb 25];103(12):1607-12. Available from: http://bit.ly/2B6wRu2
- Romo-Romo A, Almeda-Valdés P, Brito-Córdova GX, Gómez-Pérez FJ. Prevalencia del consumo de edulcorantes no nutritivos en una población de pacientes con diabetes en México. Gac Med Mex [Internet]. 2017 [cited 2018 Feb 25];153:61-74. Available from: http://bit.ly/2hNbSoc
- 11. Brown RJ, De-Banate M, Rother KI. Artificial sweeteners: a systematic review of metabolic effects in youth. Int J Pediatr Obes [Internet]. 2010 [cited 2018 Feb 25];5:305-12. Available from: http://bit.ly/2hYzdHF
- Ford HE, Peters V, Martin NM, Sleeth ML, Ghatei MA, Frost GS, Bloom SR. Effects of oral ingestion of sucralose on gut hormone response and appetite in healthy normal-weight subjects. Eur J Clin Nutr [Internet]. 2011 [cited 2018 Feb 25];65:508-13. Available from: http://go.nature.com/2A37MDe
- Pepino M, Tiemann C, Patterson B, Wice B, Klein S. Sucralose affects glycemic and hormonal responses to an oral glucose load. Diabetes Care [Internet]. 2013 [cited 2018 Feb 25];36(9):2530-5. Available from: http://bit.ly/2hOWdou
- 14. Grotz VL, Jokinen JD. Comment on Pepino et al. Sucralose affects glycemic and hormonal responses to an oral glucose load. Diabetes Care [Internet]. 2014 [cited 2018 Feb 25];37:e148. Available from: http://bit.ly/2i2YYWY
- 15. Temizkan S, Deyneli O, Yasar M, Arpa M, Gunes M, Yazici D, et al. Sucralose enhaces GLP-1 release and lowers blood glucose in the presence of carbohydrate in healthy subjects but not in patients with type 2 diabetes. Eur J Clin Nutr [Internet]. 2014

[cited 2018 Feb 25];69:162-6. Available from: http://go.nature.com/2zlU76P

- Cazau P. Tipos de investigación científica. In: Cazau P. Introducción a la investigación en ciencias sociales. 3ª edición. Buenos Aires: Editorial Galeón; 2006:17-35.
- 17. Hernández-Ávila M, Garrido-Latorre F, López-Moreno S. Diseño de estudios epidemiológicos. Salud Publica Mex [Internet]. 2000 [cited 2018 Feb 25];42(2):144-54. Available from: http://bit.ly/1PogY4C
- Aguilar-Barojas S. Fórmulas para el cálculo de la muestra en investigaciones de salud. Salud Tab [Internet]. 2005 [cited 2018 Feb 25];11(1-2):333-8. Available from: http://bit.ly/2ievzpV
- 19. Hernández B, Velasco-Mondragón HE. Encuestas transversales. Salud Publica Mex [Internet]. 2000 [cited 2018 Feb 25];42(5):447-55. Available from: http://bit.ly/2AHeM6i
- 20. Martín-Arribas MC. Diseño y validación de cuestionarios. Matronas Prof [Internet].
 2004 [cited 2018 Feb 25];5(17):23-9. Available from: http://bit.ly/1P3D36U
- 21. Organización Panamericana de la Salud. Métodos para determinar las principales fuentes de sal en la alimentación. [Internet]. Washington D.C.: Organización Panamericana de la Salud, Organización Mundial de la Salud; 2010 [cited 2018 Feb 25]:42. Available from: http://bit.ly/2muxds7
- Pérez-Lizaur AB, Palacios-González B, Castro-Becerra A. Sistema mexicano de alimentos equivalentes. 4a edición. México D.F.: Fomento de Nutrición y Salud A.C.; 2014.
- 23. Gómez-Gómez M, Danglot-Banck C, Vega-Franco L. Sinopsis de pruebas estadísticas no paramétricas. Cuándo usarlas. Rev Mex Pediatr [Internet]. 2003 [cited 2018 Feb 25];70(2):91-9. Available from: http://bit.ly/2CcY5DV
- 24. Pedrosa I, Juarros-Basterretxea J, Robles-Fernández A, Basteiro J, García-Cueto E. Pruebas de bondad de ajuste en distribuciones simétricas, ¿qué estadístico utilizar? Universitas Psychologica [Internet]. 2015 [cited 2018 Feb 25];14(1):15-24. Available from: http://bit.ly/2Gy6wHU

Journal of Research in Medical and Dental Science | Vol. 6 | Issue 2 | March 2018

25. Reglamento de la Ley General de Salud en Materia de Investigación para la Salud. [Internet]. México D.F.: Diario Oficial de la Federación de los Estados Unidos Mexicanos; 1986 [cited 2018 Feb 25]. Available from: http://bit.ly/2r79gsJ.