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ABSTRACT
A saliva samples have been collected from 42 COVID-19 patient and a 42 healthy individuals and tested for salivary
biomarkers of, α-amylase, lysozyme in addition to and mutans streptococci. Results showed non-significant difference
between mean concentration of α-amylase in COVID-19 patients (5.48 µ/ml) and healthy individuals (6.05 µg/ml), high
significant difference in mean concentration of lysozyme in COVID-19 patient (170.42 µg/ml) and healthy individuals (8.47
µg/ml), and non-significant difference in mean concentration of mutans streptococci in COVID-19 patients (6.88) × 10⁶
CFU/ml and healthy individuals (6.58 × 10⁶ CFU/ml).
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INTRODUCTION

Saliva is a bio-fluid constituted of various fluids of 
secretions of salivary glands, respiratory secretions, 
crevicular and exfoliated epithelial cells. Presence of SARS-
CoV-2 in saliva is attributed to the viral replication and 
RNA secretion in any cells and tissues related to the 
production of salivary components like salivary glands, 
periodontal tissues and the upper respiratory tract cells 
[1].
The microbial constituents of a eubiotic Humam Oral 
Microbiome (HOM) can inhibit colonization of pathogens 
through competitive exclusion and/or via facilitation of 
immune response to exclude the pathogen [2,3]. It is 
reported that a vital collaborative interactions happen 
between viruses and the micro biome and that the micro 
biome could be regulate and it, in turn, could be regulated 
by viruses through various mechanisms [4]. The oral 
micro biota can produce anti-viral substances (defensins) 
against various viruses, including respiratory tract viruses 
like coronaviruses, herpes viruses, adenoviruses, 
orthomyxoviruses and papillomaviruses [5]. Otherwise, 
invading viruses could results in dysbiosis and 
progression of disease [6].
The pandemic of coronavirus SARS-CoV-2, the causative of 
COVID-19 is respiratory virus that invades the oropharynx

as the primary site of replication but the possible impact 
on oral micro biome through development of infection 
remains un-clarified. In particular, there are no date 
available concerning the non-bacterial constituents of 
HOM (fungi and viruses), that have been shown vital for 
other diseases. Regarding COVID-19, it is reported that the 
presence of gingival inflammation/periodontitis was 
associated with a 3.5-fold increase in the risk for 
admission to Intensive Care Units (ICU), a 4.5-fold increase 
in the probability for assisted ventilation and a risk of 
8.81-fold increase in the probability for death as a 
consequences of COVID-19, separately from any other 
concomitant risk factors [7].
The functions of salivary biomarker of α-amyalse 
extensively studied for their biological activities but their 
correlation to each other in COVID-19 patient and healthy 
individuals to COVID-19 are still unrevealed. The current 
study is designed to assess whether there is any 
association between salivary α-amylase, lysozyme, and 
total a count of mutans Streptococci. The study aimed to 
measure the salivary α-amylase level in both groups 
(COVID-19 patients and heathy individuals), to measure 
the salivary lysozyme level in both groups (COVID-19 
patients and control group), to calculate the total viable 
count of mutans Streptococci and C. albicans among 
COVID-19 patients and to evaluate the relationship 
between salivary α-amylase, lysozyme, and total viable a 
count of mutans Streptococci among COVID-19 patients.

MATERIALS AND METHODS

Saliva collection: After taking patients agreement for 
collecting saliva samples, checking that the patients didn’t
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take antibiotics or any medications for the latest two 
weeks, then giving the patients plain tubes that 
numbered before sample collection. Saliva sample 
collection was made in early morning at time between 8 
am to 10 am.
The amount of the collected saliva was between 1-3 ml of 
un-stimulated saliva by allowing the saliva to accumulate 
in the mouth and then spitting into a tube. After 
collecting the salivary sample from each patient, the 
tubes were placed in a cool box with ice to transfer them 
to the laboratory to be cultured within less than an hour, 
then 0.1 ml would be taken from the salivary sample by 
micro pipette for the serial dilution tubes using PBS. The 
resting saliva was centrifuged for 3000 rpm for 10 min, 
and the clear supernatant was e and stored in freezer at 
-20°C until the determinations of salivary α-Amylase,
lysozyme and melatonin were done by ELISA test

Determination of lysozyme level

This kit was based on Competitive-ELISA detection 
method (Cell Biolabs, USA). The microtiter plate provided 
in this kit has been pre-coated with antibody. During the 
reaction, target in the sample or standard competes with 
a fixed amount of Biotin-Antigen. Excess conjugate and 
unbound sample or standard are washed from the plate. 
HRP-Streptavidin was added and unbound conjugates 
were washed away with wash buffer. Then TMB substrate 
solution is added to each well. The enzyme substrate 
reaction is terminated by the addition of a sulfuric acid 
solution and the colour change is measured 
spectrophotometrically at a wavelength of 450 nm. The 
concentration of target in the samples is then determined 
by comparing the OD of the samples to the standard 
curve.

Determination of salivary α-Amylase

The ELISA test kit (LDN, Germany) provides a 
quantitative in vitro assay for free α-amylase in human 
saliva. The test kit contains microtiter strips each with 8 
break off reagent wells coated with anti-rabbit 
antibodies. In the first reaction step, diluted patient 
samples are pipetted into the reagent wells together with 
peroxidase labelled α-amylase and a specific rabbit anti-
α-amylase antibody. α-amylase from the patient sample 

and the labelled α-amylase in the conjugate compete for 
the free binding sites of the specific antibody. In the third 
incubation step, the bound peroxidase catalyses a colour 
reaction with the peroxidase substrate Tetra Methyl 
Benzidine (TMB). The intensity of the colour formed is 
inversely proportional to the concentration of α-amylase 
in the sample. The results for the samples are determined 
using the standard curve.

Cultivation of mutans streptococci

Saliva samples were centrifuged at 3000 rpm for 10 min. 
Precipitate has been discarded and the supernatant 
forwarded for culture and identification of mutans 
Streptococci and The supernatant has been serially 10-
folds diluted in PBS enumeration of mutans streptococci, 
the supernatant of saliva was serially 10-folds diluted in 
PBS and streaked on MSBA agar for calculation of 
CFU/ml of Mutans Streptococci.
Statistical analysis: Statistical analysis and processing of 
the data were carried out using SPSS version 21 
(Statistical Package for Social Sciences) under Windows 
10. Data were subjected to the following:
Descriptive statistics
• Arithmetic Means (M), Standard Deviation (SD) and

Standard Error (SE).
• Minimum (mini) and maximum (maxi).
Inferential statistics

The statistical tests that were used in this study:
• Anova test.
• L.S.D. test.
• Student's t-test and.
• Pearson correlation coefficients.
The level of significance was accepted at P< 0.05, and 
highly significance when P<0.01.

RESULTS

α-Amylase: Salivary α-amylase level in COVID-19 
patients group and healthy individuals group is shown in 
Table 1 and Figure 1, which revealed the presence of 
mean value of salivary α-amylase among the COVID-19 
patients group (5.48) u/ml less than healthy individuals 
group (6.05) u/ml, with a statistical non-significant 
difference between the two groups, the t-value was 
(1.602) and the p value was (0.117).

Variable No. of cases Minimum Maximum Mean SE SD

Healthy individuals 42 3.6 9.09 6.05 0.25 1.66

COVID-19 patients 42 1.79 11.2 5.48 0.33 2.18

Figure 1: Means of a-amylase among COVID-19 
patients and healthy individuals groups.

Lysozyme: Salivary lysozyme level in COVID-19 patients 
group and healthy individuals group is shown in Table 2 
and Figure 2, which revealed the presence of higher 
mean value of salivary lysozyme among the COVID-19 
patients group (170.42) g/ml than healthy individuals 
group (8.47) g/ml, with a statistical high significant 
difference between the two groups, the t-value was 
(7.668) and the p value was (0.001).
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Table 2: Descriptive of lysozyme.
Variables No. of cases Minimum Maximum Mean SE SD

COVID-19 patients 42 24.38 513.3 170.42 21.11 136.86

Healthy individuals 42 4.76 9.29 8.47 0.16 1.07

Total Viable Count of Mutans Streptococci (CFU/ml)

Result in Table 3 and Figure 3 shows the statistical 
analysis of viable count (CFU/ml) × 10⁶ of Total Viable 
Count of Salivary Mutans streptococcus, there was Non-
significant difference between two groups, the t-value 
was (0.43), the p value (0.66), the mean value in healthy 
individuals group (6.58) × 10⁶ CFU/ml was less than 
COVID-19 patients group mean value (6.88) × 10⁶ CFU/ml

Variables No. of cases Minimum Maximum Mean SE SD

Healthy individuals 42 2.8 11.28 6.58 0.36 2.39

COVID-19 patients 42 3 17.44 6.88 0.55 3.61

Figure 3: Means of Total viable count of salivary 
mutans streptococcus among COVID-19 patients 
and healthy individuals group.

DISCUSSION

Salivary lysozyme level in COVID-19 patients group 
and healthy individuals group

The presence of lysozyme in body fluids, including saliva, 
is an important factor in non-specific mechanisms 
towards microbial infections [19-21]. The high significant 
difference between the COVID-19 patients and healthy 
individuals groups is a strong marker that SARS-CoV-2 
provokes the salivary glands to secrete a 20 fold of 
lysozyme concentration of healthy individuals to 
counteract the viral infection.
Lysozyme is bactericidal for gram-positive bacteria via 
hydrolyzing the β-1,4 glycosidic bond between N-
acetylglucosamine and N-acetylmuramic acid of the 
bacterial cell wall [22]. Furthermore, the lysozyme exerts 
antimicrobial activity through binding to negatively 
charged surfaces of microbes owing to its cationic nature 
[23,24]. The immunomodulatory action of lysozyme has 
only been appreciated in last few years.
Within neutrophils and marcophages, lysozyme works to 
increase their pro-inflammatory response, but when it 
secreted outside the above mentioned cells as well as 
epithelial cells, it limits inflammation through decreasing 
the chemotaxis and oxidative burst in neutrophils [25], it 
suppresses the production of IL-6 and TNF-α in  

macrophages [26], it binds and decreases the circulating 
levels of Advanced Glycation End products (AGEs) (that 
are pro-oxidative) in addition to increasing their renal 
excretion [27] and it disrupts the capacity of 
peptidoglycan to bind the complement factors that works 
as anaphylotoxins [22]. Moreover, when subjected to 
artificial conditions of gastro-intestinal conditions, 
thehydolyzate of lysozyme of hen egg white showed 
remarkable Angiotensin Converting Enzyme (ACE) and 
anti-oxidant activity [28,29]. As mentioned above, the 
oxidative stress (including participation of AGEs), 
cytokines of IL-6 and TNF-α, inflammation caused by 
macrophages and neutrophils and the Renin–Angiotensin 
System (RAS) are characteristic in the Acute Respiratory 
Distress Syndrome (ARDS) and/or severe COVID-19. It is 
most interested that the activity of lysozyme beside 
lactoferrin in neuroprotection of Alzheimer’s patients 
through inhibition of amyloid-beta aggregation [30] could 
be an active mechanism in treatment of potential 
neurological manifestations in severe cases of COVD-19.
The increase in Salivary Antimicrobial Proteins (sAMPs) 
like lysozyme and lactoferrin in Lower Respiratory Tract 
Infection (LRTI) was reported in several previous studies 
[31,32]. The advantage of increasing level of lysozyme is 
to raise the immunomodulatory effects of lysozyme to 
counteract SARS-CoV-2 infection [25-28]
The viable total count of salivary mutans streptococci 
in COVID-19 patients group and healthy individuals 
group
The count concentration of mutans streptococci in 
COVID-19 patients and healthy individuals was 
attributed to the fact that the natural habitat of mutans 
streptococci is the oral cavity. The mutans streptococci 
have the ability to exert effective persistence in oral 
cavity due to formation of diverse human associated-
biofilms [33-65] reported that the bacterial profile of oral 
microbiota in COVID-19 patients is characterized by 
dominance of Prevotella salivae and Veillonella 
infantium, whereas Neisseria perflava and Rothia 
mucilaginosa were dominant in healthy individuals along 
with N. perflava, K. gabonensis, G. elegans, Porphyromonas 
pasteri, Gemella taiwanensis, R. mucilaginosa, and 
Streptococcus oralis. Mutans streptococci concentration in 
oral cavity is unaffected by COVID-19 [66-95].
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Figure 2: Means of lysozyme among COVID-19 
patients and healthy individuals group.
Table 3: Descriptive of mutans streptococcus.



CONCLUSION

It is concluded that salivary lysozyme is highly
responsive through COVID-19 to immunomodulate the
infection. There is an inverse relationship between
salivary melatonin level and COVID-19 that is resulted,
probably, from fast utilization of melatonin as free radical
scavenger to counteract the inflammation-generated high
level of ROS. The secretory function of salivary glands for
secretion of α-amylase is unaffected during COVID-19
due to the homeostatis of the enzyme in both COVID-19
patients and healthy individuals. Oral candidiasis is a
sequeleae of COVID-19 as result of saliva low flow rate
(Xerostomia) occurred during SARS-CoV-2 infection to
salivary glands. The total count of Mutans Streptococci is
stable during COVID-19.

RECOMMENDATIONS

It is recommended to study the effect of COVID-19 on
oral microbiota of gram-positive and gram-negative
bacteria and monitor the potential presence of
bacteremia and/or septicemia in COVID-19 patients due
to overgrowth of any member of oral bacteria, study level
of other salivary biomarkers through course of COVID-19
pathology like C-Reactive Protein (CRP), myoglobin,
creatine kinase isoform MB, α-2-macroglobulin,
glycosylated hemoglobin (HbA1c) and various
Interleukins (ILs), study the involvement of periodontal
diseases in the COVID-19 due to depletion of salivary
melatonin level in COVID-19 patients that is correlated to
periodontal diseases, study the correlation between
severity of COVID-19 and levels of salivary biomarkers
and oral micro biome to uncover the contribution of
salivary biomarkers and oral micro biome in
determination of susceptibility of an individual to
COVID-19.
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