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INTRODUCTION

The functional connectivity or association between 
gut and brain was first proposed by the Ancient Greek 
philosophers and scientists. During this time, disease 
of the brain such as epilepsy was thought to result from 
dysfunctions of the gut. Consequently, it was treated by 
deprivation of food ingestion. Unfortunately, however, 
for several centuries, no much attention was given 
to the gut-brain functional relationship until the late 
nineteenth century when this functional connectivity 
was revived. The twentieth and twenty first centuries 
have witnessed a tremendous burst in interest on the 
gut-brain functional connectivity, which is now believed 
to underlie the development of several human ailments 
[1,2]. 

Under normal conditions, the gut microbiota maintains 
functional and structural integrity of the gut mucosa 
as well as homeostasis of not only the gut, but also 
other organs and tissues of the body [3,4]. Over the 
past decades, accumulating evidences have implicated 
dysfunctions of the gut microbiota in the pathogenesis 
of many diseases of the brain, including depression, 
anxiety, autism spectrum disorders, attention deficit 
hypersensitivity disorder, and multiple sclerosis 
[3,5–7]. More recently, emerging studies have shown 
that dysfunctions of the gut microbiota can trigger the 
development of Alzheimer’s disease (AD) or worsen the 
progression of this neurodegenerative disease [8-10]. 
However, due to the bidirectionality of the gut-brain axis, 
it is not clear whether AD can predispose an individual 
to disorders in gut microbiota.

AD is the most common, chronic neurodegenerative 
disease, mostly affecting medial temporal lobe 
(particularly, hippocampus) and associative neocortex, 
and is characterized by excessive neuronal accumulation 
of a 38–43 amino acid amyloid-beta peptide (Aβ), due 
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to failure of the compensatory mechanisms that prevent 
its aggregation, ultimately leading to neurodegeneration 
and dementia, with formation of senile (neuritic) plaques, 
and excessive phosphorylation of the cytoskeletal Tau 
proteins mostly in neurons, which accumulate to form 
neurofibrillary tangles [11–13]. The accumulation of Aβ 
in neurons is due to multiple disorders of homeostasis 
that regulate the cleavage of the amyloid precursor 
protein (APP). The cleavage reaction is successively 
executed by beta-secretase and gamma-secretase 
(Figure 1) [12]. 

Figure 1: Sequence of events resulting to the formation of beta-
amyloid protein (Aβ) and plague that lead to neurodegeneration 
and dementia

In Figure 1, the amyloid precursor protein (APP) is 
cleaved by the transmembrane enzyme, β-secretase, to 
produce soluble amyloid precursor protein-β (sAPPβ), 
and carboxy-terminal fragment 99 (CTF-99). The latter 
is worked upon by another intramembrane bound 
protease, γ-secretase, resulting to the formation of 
amino-terminal APP intracellular domain and Aβ, which 
accumulates in the neuron, due to dysfunctions of the 
compensatory mechanisms that prevent its aggregation, 
and subsequently oligomerize and forms plaques. The 
formation and accumulation of Aβ and plaques underlie 
the cognitive and behavioral impairment, which AD 
patients’ experience [11,12,14–18].

The sequence of events outlined in Figure 1 leads to 
progressive cognitive and behavioral impairment that 
culminates in functional dependence, and subsequently, 
death [17–24]. 

Despite significant progress made in understanding 
the mechanism of amyloid formation, which underlies 
the pathogenesis of AD [25–27], surprisingly however, 
there is no effective therapy for AD [28,29]. Current 
therapeutic options include use of cognitive enhancers 
(acetyl-cholinesterase inhibitors donepezil, extended 
release galantamine hydrochloride, and the N-methyl-
D-aspartate receptor antagonist memantine) [30,31]. 
Relatively more recently, the addition of healthy diet, 
physical and cognitive training to the treatment regimen 
have shown to improve symptoms of the disease [11]. 
Success in development of β- and γ-secretase inhibitors, 
which would have been effective therapeutic agents, has 
shown detrimental effects due to inhibition of notch 

signaling pathway. A promising class of pharmacological 
agents for AD, γ-secretase modulators, does not interact 
with the notch pathway, and thus may be a safer option for 
AD pharmacotherapy [31]. Furthermore, classification 
of the disease into different phases: pre-symptomatic 
(pre-clinical), pre-dementia (progressive, mild cognitive 
impairment), and clinically-defined dementia [12], 
which was believed to enable early identification of 
individuals at risk and enhance management of the 
disease, has not had any positive impact on the incidence 
rate of the disease [32,33]. More so, recent development 
of robust biomarkers of AD, which is thought to provide 
improved diagnostic accuracy and prediction to identify 
individuals at risk, thereby initiating early treatment 
and enhancing rate of decline in phase conversion of the 
disease [12,34,35]. Unfortunately, however, there is a 
continuous rise in the incidence of the disease [32,33]. 

The continuous search for different treatment options 
of AD or the prevention of the disease provides a 
substantial argument for constantly rising prevalence of 
AD in the world [36]. Over the past decades, there has 
been continuous increase in the prevalence of AD and the 
trend is believed to continue in the nearest decades [37]. 
Alzheimer’s Disease International revealed that between 
1990 and 2017 there has been constant increase in 
the incidence rate of the disease [32]. In 2006, the 
prevalence of AD in the world was approximately 26.6 
million [33]. In 2013, about 44.4 million people had AD, 
and the number of people suffering from AD is believed 
to steadily increase, hitting 75.6 million in 2030 [32], 
and by 2050, the prevalence of AD is estimated to reach 
106.4 million–This means that 1 in every 85 persons 
worldwide will have the disease by 2050 [33]. It should 
be noted, however, that prevalence of the disease may 
substantially vary in different regions of the world, 
ranging from 3 to 15%: Takizawa et al. reported 3%–7% 
prevalence [38], Chandra et al. identified a prevalence of 
10.5% [39], and 15% was documented by Ganguli et al. 
[40]. Throughout the world, accumulating reports have 
shown that the incidence of AD will continue to increase 
[32,36]. 

The mortality rate from the disease is very high. Millions 
of AD patients are estimated to die annually as new 
cases are continuously recorded in different parts of 
the world [41]. While the proportion of deaths from 
other non-communicable diseases (heart disease and 
stroke) between 2000 and 2010 reduced by 16% and 
23% respectively, the proportion of deaths from AD 
was reported to increase by 68% [42]. The financial 
burden of AD on caregivers, families and the health care 
system is substantially high [41,43–45]. For instance, in 
the United States alone, total costs of AD was estimated 
at 183 billion United States (US) dollars in 2011 [30], 
caregiver cost in 2014, estimated at more than 217 
billion US dollars [46] and is expected to increase to 1.1 
trillion US dollars by 2050 [30]. 



Menizibeya O Welcome J Res Med Dent Sci, 2018, 6 (5):246-263

248Journal of Research in Medical and Dental Science | Vol. 6 | Issue 5 | October 2018 

Recent investigations highlighting the role of the gut 
microbiota in development and progression of AD, 
indicates that the gut and its commensal microbes 
represent a key therapeutic target for AD [8–10,47,48]. 
This paper reviews recent data on the association between 
dysfunctions of the gut microbiota and AD development 
and progression. The paper also presents contemporary 
understanding and state-of-the-art information on the 
mechanisms for this association. Since disorders in gut 
microbiota can lead to AD development, question arises-
whether AD can predispose an individual to disorders in 
gut microbiota. Future research directions are explored 
at strategic points of the discussion. 

Microecology of the gut microbiota: Normal and 
abnormal gut microbiota 

Normal gut microbial ecology 

The gut microbiota refers to the overall beneficial 
microbial population that inhabits the entire 
gastrointestinal tract, but can be potentially harmful 
to the host in unfavorable micro-environmental 
conditions. The gut microbiota constitutes over 90% 
of the total microbes that colonize the human body. 
This peculiar feature of microbial colonization of the 

gut is evolutionarily determined and may be due to 
the favorable gut microenvironment and availability of 
nutrients [49,50]. 

Colonization of the gut is believed to begin in utero 
when the fetus swallows amniotic fluid, which is now 
believed to harbor specific commensal microbes [51,52], 
contrary to the long held view that this fluid was sterile 
[53,54]. Microbial colonization of the baby increases 
substantially following birth and is believed to depend 
on several factors including mode of delivery, and other 
environmental and genetic factors [55]. By 3 years of age 
the child’s microbial composition of the gut is similar to 
the adult composition [48]. 

The adult gut contains approximately 100 trillion 
beneficial microorganisms comprising about 1000 
species mainly from bacteria and archaea [56]. Majority 
of the gut microbiota comprises the Firmicutes and 
Bacteroidetes species, but also, a smaller number 
of Actinobacteria, Cyanobacteria, Fusobacteria, 
Proteobacteria, and Verrucomicrobia (Tables 1A-1C) 
[57–59]. This classification (Tables 1A-1C) is based 
on phylogenetic data. However, a recent functional 
classification of microbes based on their interactions 

Class Family Genus 

Bacteroidia 

Bacteroidaceae Bacteroides sp. (B. fragilis, B. helcogenes, B. salanitronis, B. thetaiotaomicron, B. vulgatus, Parabacteroides sp.)
Porphyromonacaceae Odoribacter splanchnicus, Dysgonomonas sp., Porphyromonas sp., Bamesiella sp., Tannerella sp.

Rikenellaceae Alisitpes sp. (e.g. A. putredinis, A. finegoldii, A. onderdonkii and A. shahii), Rikenella sp., Acetobacteroides sp., 
Anaerocella sp.)

Prevotellaceae Prevotella sp., Paraprevotella sp., Alloprevotella sp., Hallella sp., Marseilla sp., Metaprevotella sp.

Table 1A: Nomenclature of the most abundant bacteria (Bacteroidetes) found in a healthy gut [68–71]

Table 1B: Nomenclature of the most abundant bacteria (Firmicutes) found in a healthy gut [60,68–80]

Class Family Genus

Bacilli
Streptococcaceae Streptococcus sp. (S. dysgalactae, S. gordonii, S. agalactiae)

Bacillaceae Bacillus sp. (e.g. B. timonensis)

Lactobacillaceae Lactobacillus sp. (e.g. L. casei, L. rhamnosus, L. fermentum, L. plantarum, L. salivarius, L. bulgaricus, L. 
acidophilus, L. leichmannii)

Palanococcaceae Kurthia senegalensis, K. massiliensis, K. timonensis
Enterococcaceae Enterococcus sp. (e.g. E. saccharolyticus)

Paenibacillacaceae Paenibacillus sp.
Listeriaceae Listeria grayi

Leuconostocaceae Weissella sp., Leuconostoc mesenteroides

Clostridia

Clostridiaceae Clostridium sp. (e.g. C. leptum, C. ramosum, C. orbisindens, C. saccharolyticum, C. defficile)

Ruminococcaceae Ruminococcus sp. (e.g. R. albus, obeum or Blautia obeum, R. massiliensis, R. torques, R. bromii), Flavonifractor, 
Acetanaerobacterium, Anaerobacterium, Anaerofilum, Ethanoligenens Faecalibacterium

Eubacteriaceae Eubacterium sp. (e.g. E. limosum, E. ballii, E. ventriosum, E. eligens, E. rectale), Acetobacterium, Alkalibacter, 
Alkalibaculum, Anaerofustis, Garciella, Pseudoramibacter

Lachnospiraceae Dorea sp., Anaerostipes sp., Blautia sp., Coprococcus sp., Roseburia sp., Butyrivibrio sp., Marvinbryantia sp., 
Roseburia hominis

Peptococcaceae Desulfitobacterium sp., Desulfonispora sp., Desulfotomaculum sp., Peptococcus sp.
Peptostreptococcaceae Peptostreptococcus productus, Anaerococcus senegalensis
Clostridiales Family XI, 

Incertae Sedis Parvimonas sp., Finegoldia sp.

Christensenellaceae Christensenella minuta, C. timonensis, C. massiliensis

Negativicutes Veillonellaceae Negativicoccus sp., Veillonella sp. (e.g. Veillonella parvula), Dialister sp., Megamonas sp., Mitsuokella sp., 
Massilibacillus sp.

Acidaminococcaceae Acidaminococcus sp.
Selenomonadaceae Propionispira sp., Selenomonas sp., Zymophilus sp.

Erysipelotrichai Erysipelotrichaceae Corpobacillus sp., Holdemania sp., Catenibacterium sp., Turicibacter sp., Dielma fastidiosa
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with the host immune system was proposed [60]. These 
resident microbes of the gut inhabit every region of the 
tract–from the mouth to the anus. The mouth is estimated 
to harbor approximately 500–700 bacterial species 
mainly from Actinomyces, Fusobacterium, Granulicatella, 
Gemella, Haemophilus, Neisseria, Porphyromonas, Rothia, 
Streptococcus, and Veillonella [61,62]. The esophageal 
microbiota population mainly comprises Actinobacteria, 
Bacteroidetes, Firmicutes, and Proteobacteria [63,64]. 
The estimated number of gut microbiota steadily 
increases aborally [65,66]. The resident microbes of 
any region of the gut can substantially influence the 
state of health and development of diseases through 
broadly defined microbe-microbe and microbe-host 
interactions [67]. 

The normal composition of gut microbiota strongly 
depends on many factors, which include inter-individual 
differences [60,68,81,82], age, disease, antibiotic use 
[68,82], malnutrition, and dietary habit [68] (discussed 
in the subsections below). For example, vegetarians 
have elevated number of Bacteroidetes, but decreased 
quantity of Clostridia. Also, different ethnic groups and 
geographical regions have variations in composition 
of gut microbiota [68]. So, Americans, Asians, and 
Europeans only have in common, symbiotic bacteria 
of Sesbania Scop, Dictyostelium discoideum, and 
Schizosaccharomyces pombe [68]. Wide differences in gut 
microbiota have been reported amongst native Africans, 
African Americans, native Europeans, and European 
Americans [81]. Within geographical location, climate 
and latitude appear to be crucial factors that determine 
differences in colonization of gut microbiota 
in individuals of different races [81]. Further 

details on gut microbiota differences according to 
geographical locations have been discussed in a study 
by Gupta et al. [83]. 

Abnormal gut microbial ecology in Alzheimer’s 
disease 

Abnormal microbes arise in the gut following dis-
turbances by factors that perturbs the normal gut microbial 
ecology. Such factors mainly include, type of nutrition, 
diet, pathogenic infections, and antibiotics use [8,9]. 
Abnormal microbiota is characterized by the presence 
of pathogenic microbes and substantial reduction in 
the proportion of the beneficial microbes in the gut. 
In abnormal conditions of the gut microenvironment, 
species of the phylum Proteobacteria such as Clostridium, 
Escherichia, and Shigella (proinflammatory bacteria) 
are expected to increase [47,48,84,85]. In contrast, 
anti-inflammatory bacteria, in particular, Eubacterium 
rectale, Bacteroides fragilis, Bifidobacterium breve, 
B. longum, B. infantis, Lactobacillus helveticus,  
L. rhamnosus, Prevotella, Desulfovibriobacteria, and the 
genera belonging to the family Lachnospiraceae, and 
Ruminococcaceae are substantially reduced in abnormal 
gut microbial ecology [47,48,84–89]. Recent report 
has implicated the gastric cancer causing microbe, 
Helicobacter pylori in the development of Alzheimer’s 
disease due to encephalitogenic responses of the pro-
inflammatory Th17-cells that develop in response 
to Helicobacter pylori infection [86,87]. Very recent 
studies using germ free mice models of AD have been 
used to clarify how the gut microbiota changes in AD. 
Zhan et al. [90] reported association between cognitive 
dysfunction and abnormal gut microbiota in senescence-
accelerated mice. In a recent study conducted in a 
Drosophila AD model by Wu et al. not only showed that 

Table 1C: Nomenclature of the other bacteria found in the gut [60,68–80]

Phylum Class Family Genus 

Actinobacteria Actinobacteria 

Corynebacteriaceae Corynebacterium sp. (C. ammoniagenes, C. parvum, C. pyogenes), Turicella sp.
Coriobacteriaceae Eggerthella sp., Collinsella sp., Slackia sp., Denitrobacterium sp., Parvibacter sp.

Propionibacteriaceae Ponticoccus sp., Proponiobacterium sp., Gordonibacter sp., Propioniferax sp., 
Tessaracoccus sp., Naumannella sp. 

Euryarchaeota Methanobacteria Methanobacteriaceae Bifidobacteria sp., M. smithii
Verrucomicrobia Verrucomicrobia Verrucomicrobiaceae Akkermansia municiphila
Fusobacteria Fusobacteria Fusobacteriaceae Fusobacterium sp. 
Synergistetes Synergistia Synergistaceae Synergistes sp., Anaerobaculum hydrogeniformans, Aminobacterium sp.

Proteobacteria 

Gammaproteobacteria

Enterobacteriaceae 
Escherichia coli, Salmonella sp., Yersinia pestis, Klebsiella sp., Shigella sp., Proteus 
sp., Enterobacter sp., Serratia sp., Providencia sp., Edwardsiella sp., Cedecea sp., 
Citrobacter sp.

Moraxellaceae Acinetobacter radioresistens
Succinivibrionaceae Succinatimonas sp. 
Desulfovibrionaceae Desulfobivrio sp., Bilophila sp. 
Pseudomonadaceae Pseudomonas sp. 

Deltaproteobacteria Desulfovibrionaceae Desulfovibrio piger, Bilophila wadsworthia

Epsilonproteobacteria
Helicobacteraceae H. pylori, H. windhamensis, H. cinaedi, H. pullorum
Campylobacteraceae Campylobacter sp., Arcobacter butzleri

Betaproteobacteria

Neisseriaceae Neisseria macacae
Oxalobacteraceae Oxalobacter sp.
Burkholderiaceae Ralstonia sp.
Sutterellaceae Sutterella parvirubra, parasutterella excrementihorminis 
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abnormal (or pathogenic) microbes in the gut resulted 
to neuroinflammation, they also reported exacerbation 
of progression of Alzheimer’s disease following enteric 
dysbiosis through increased recruitment of immune 
hemocytes to the brain, which resulted to induction of 
neurodegeneration via TNF/JNK (tumor necrosis factor/
c-Jun N-terminal kinase) pathway [91]. Other authors 
have identified similar reduction of the composition of 
beneficial bacteria in AD animal models. Indeed Harach 
et al. reported a significantly higher (by 24%) cerebral 
level of amyloid beta protein (Aβ42) in germ free 
mice model of AD compared to conventionally-raised 
transgenic mice model of AD [86]. Furthermore, Harach 
et al. [86] showed that Actinobacteria, Firmicutes, 
Verrucomicrobia, and Proteobacteria were significantly 
lower in conventionally-raised transgenic mice model 
compared to wild type. The conventionally-raised 
transgenic mice had significantly reduced Allobaculum 
and Akkermansia, but increased number of the genera in 
Rikenellaceae, compared to the wild type [86]. However, 
the conventionally-raised transgenic mice model had 
a higher number of Bacteroidetes and Tenericutes 
phyla compared to aged mice model, suggesting that 
age remains a crucial factor that predisposes to the 
development of the diseases [86]. Human data have 
also revealed similar findings [48]. Recent experimental 
results in animal models and human subjects have shown 
that improving abnormal gut microbiota may provide an 
alternative treatment for cognitive dysfunction and AD 
(vide infra) [90]. 

Factors modulating the gut microbiota-brain axis 
influence the development and progression of 
Alzheimer’s disease age-related factors

The major factor modulating the development or 
progression of AD is aging (Figure 2). The biological 

phenomenon of normal ageing is accompanied by 
several alterations in cerebral metabolism [92,93]. The 
metabolic alterations arising from normal ageing include 
decreased glucose transport and utilization, resulting 
to ATP depletion, which in turn affects signaling of 
Ca2+ and neurotransmitters (e.g. glutamate) and their 
receptors [92,94]. Disorder in brain metabolism due 
to ageing increases neuronal Ca2+ level and glutamate 
toxicity, which favor accumulation of Aβ [92,95]. Normal 
biological ageing is also accompanied by substantial 
decrease in antioxidants and elevation of free radicals, 
which worsen the development or progression of AD 
[92]. In addition, accumulation of Aβ increases with age 
[95]. The impact of ageing on brain cells, in addition 
to the gut microbiota changes associated with ageing 
substantially worsens the prognosis of AD [92,94].

As shown in Figure 2, Homeostatic disorders resulting 
from ageing, genetic, and environmental influences 
as well as other factors, contribute to derangement 
in metabolism, immune and neural signaling, that 
subsequently favor the generation of Aβ peptides and its 
accumulation in the extracellular spaces of brain cells, 
and cytoplasmic tau protein hyperphosphorylation. 
These processes mostly occur in neurons (e.g. cholinergic 
neurons), but they can take place in astrocytes and other 
glial cells, especially in condition of stress that results in 
the activation of glial cells [17,19]. At first, the deposition 
of Aβ and tau aggregates triggers the activities of the 
neuronal and glial cytoplasmic debris clearance system, 
known as proteolytic system–autophagy and ubiquitin-
proteasome system [20]. But the proteolytic system 
become overworked or subsequently, progressively 
destroyed by the disease. Indeed several protein types, 
including proteins of the proteolytic system, have been 

Figure 2: Sequelae of events that favor the formation of Aβ peptides and Homeostatic disorders resulting from ageing, genetic, and 
environmental factors
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found to accumulate in the cytosol in AD [21]. Another 
compensatory mechanism involves an increase in the 
expression of the anti-inflammatory, neuroprotective 
interleukin-10 [22]. Failure of the compensatory 
mechanisms finally leads to continuous accumulation of 
Aβ and tau aggregates, which in turn leads to neuronal 
and glial cell damage, and further exacerbates the 
inflammatory and oxidative stress in neurons and glia 
[19]. The brain regions affected, which mostly involve 
the hippocampus and neocortex, play essential role 
in cognition, precisely, conscious memory of facts and 
events. The hippocampus and associated structures of 
the medial temporal lobe form the limbic system, which 
is involved in the development of anxiety, depression 
and other behavioral abnormalities [23,24]. 

Genetic factors in Alzheimer’s disease

Mutations in genes localized on chromosomes 14, 19, 
and 21 that code for APP and presenilin have been 
implicated in AD development. The peptide presenilin 
is the catalytic subunit of γ secretase. Active γ secretase 
complex is formed from presenilin 1 or 2, nicastrin, 
presenilin enhancer 2 and anterior pharynx defective 
1 [15,17,92,96-98]. Hundreds of autosomal dominant 
mutations have been identified in APP and presenilin 
[17]. A patient with an AD causing mutation can have 
the mutation affecting either APP or presenilin, or a 
combined mutation affecting both proteins. It is believed 
that the majority of early-onset cases of AD results from 
a combination of genetic mutations that affect both APP 
and presenilin proteins [20]. It should be mentioned that 
not all mutations in genes encoding these proteins may 
lead to disease development. Pathogenic mutations of the 
APP gene have been reported in different populations–
These mutations increase Aβ generation by promoting 
APP β-site cleavage by beta-secretase [99,100]. However, 
a protective mutation of APP gene has been reported, 
known as the Icelandic mutation, which decreases the 
generation of Aβ [101,102]. Such protective genetic 
alteration can be harnessed for potential benefit that 
may add to the effectiveness of AD treatment or disease 
prevention. Genetic disorders in cerebral metabolism 
can enhance the rate of accumulation of Aβ due to 
disordered Ca2+ signaling [95]. 

Environmental factors

Some environmental factors contribute to the 
development and progression of AD (Figure 2) [103,104]. 
For instance, unhealthy early- and late-life exposure 
to environment substances that negatively affects the 
composition of the gut microbiota may be possible 
factors that affect the development and progression of 
AD [105]. Toxic environmental substances such as lead, 
mercury, pesticides, and other noxious substances can 
cause neurotoxicity that leads to serious neurological 
disorders. These toxic substances cause senescence to 
occur at a faster rate, which may in turn facilitate Aβ 
formation [28]. To prevent the detrimental effects of 

environmental factors on the formation of Aβ, experts 
recommend a healthy diet, nutrition, and physical 
activity, which are effective in reducing the incidence of 
the disease [11,106]. Lower incidence of AD has been 
associated with a lower consumption of dairy products. 
The consumption of fruit and vegetable was reported to 
protect against cognitive decline, dementia, and AD. The 
Mediterranean diet, which comprises monounsaturated 
fatty acids, polyunsaturated fatty acids, cereals and red 
wine, was associated with decreased cognitive decline 
and phase conversion of AD [107–109]. Emerging studies 
have also reported the beneficial effect of low-moderate 
alcohol consumption on cognitive decline, dementia and 
AD [108,110]. However, it should be mentioned that 
recent evidences indicate the absence of safe quantity 
of alcohol consumption. Thus, defining quantity of 
alcohol intake as low or moderate may not be strictly 
correct [111,112]. The recent global analysis performed 
by the Global Burden of Disease Study 2016 Alcohol 
Collaborators revealed a high level of alcohol-related 
harm and mortality even at a low alcohol consumption 
[112], confirming our previous results [112–114]. It is, 
therefore, necessary to investigate the mechanisms of 
action of alcohol, even in low-moderate doses, especially 
on the central nervous system functions.

Individual factors

The composition and type of gut microbiota substantially 
vary among individuals and depends on many factors 
such as nutrients, lifestyle, age, antibiotics, infections, 
genetic factors, mode of delivery at birth, method of 
infant feeding mucosal receptors, luminal pH, and 
immune response [50,66,115,116]. Some of these factors 
modulate the risk for several brain diseases including AD 
[117]. Thus individual microbial population differences 
may underlie differences in Alzheimer’s disease 
development and progression.

Other factors

Other factors such as diabetes mellitus, obesity, 
hyperlipidemia, vascular dysfunctions, depression, 
and stress tend to play a role in the development or 
progression of AD (Figure 2) [56,93,105,118–120]. Also, 
sex and level of education have been shown to influence 
the development of AD [40,108]. However, certain forms 
of AD, which may not have identifiable cause, may be 
related to multiple factors [92,121,122]. 

The multiple pathways that connect the gut 
microbiota to the brain

The pathways and mechanisms that link the gut 
microbiota to the brain are multiple and complex, 
generally termed the microbiota-gut-brain axis, a 
bidirectional communication network that comprises 
endocrine, neural, immune, and metabolic functional 
connectivity [8,9]. This network is essential for the 
maintenance of homeostasis in the gut and almost 
all other organs and tissues of the body [123]. The 
endocrine pathway is mediated by the interaction 
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between the gut microbiota and neuroendocrine 
cells of the gut. The neural pathway is mediated by 
interaction of the gut microbiota with central nervous 
system (including hypothalamic-pituitary-adrenal axis), 
autonomic nervous system (mainly via the vagus nerve), 
and enteric nervous systems. The immune pathway 
is due to the interaction between the gut microbiota 
and neuroimmune systems [123,124]. The metabolic 
pathways involve the synthesis of metabolites by the gut 
microbiota such as short chain fatty acids that regulate 
a range of physiological processes in the gut and other 
regions of the organism [124,125]. 

Mechanisms underlying abnormal gut microbiota 
behavior resulting to Alzheimer’s disease 
development and progression: Implications for new 
therapeutic options 
Gut barrier defect due to abnormal microbial ecology 

Abnormal microbes in the gut produce toxins that 
disrupt the intercellular linkages between epithelial 
cells of the gut thereby increasing the rate of paracellular 
shunt of substances between the gut and circulatory 
system (Figure 3) [9]. One of the most implicated 
intercellular linkages in this disruption is the tight 
junction proteins (claudins), resulting to disorder of 
the gate and fence function of tight junctions (Figure 
3). This leads to impairment in selective transport of 
substances, allowing diffusion of proteins and lipids 
as well as uncontrolled movement of ions and toxins 
into the circulatory system from the luminal side of the 
gut (Figure 3). This increases the leakiness of the gut 
epithelium due to increased expression of claudin-2 
[126–132]. The abnormal gut microbiota also disrupt the 
permeability of the blood-brain barrier (Figure 3) due 
to disorder in the expression of sealing claudins type-
1, -3, -4, -5, -7, -8, -11, -14, -15, -16, -18, and -19, which 
are supposed to preserve the permeability of the blood 
brain barrier [128,133–137]. Disorder in the expression 
of leaky and sealing claudins increases the likelihood of 

development of neurodegenerative disorders, including 
AD [9,133,134].

In Figure 3, the payer’s patch and the subepithelial 
dome containing high number of immune response cells 
participate in response to foreign aggression. Microbial 
antigens, toxins and other proinflammatory factors 
diffuse to neighboring cells (including interstitial cells of 
Cajal, enteric neurons and glia), tissues and organs via the 
circulatory system and can exert a range of influences on 
vagus nerve signaling. The toxins and proinflammatory 
factors reach the brain mainly via the circulatory system 
or affect brain information processing via influences on 
the vagus nerve signaling.

Gut microbiota–immune axis dysfunctions contribute to 
the development and progression of Alzheimer’s disease 

The gut microbiota actively coordinates the activity 
of the immune system, in part, by maintaining the 
intestinal barrier [47,88]. Over the past decades 
research has shown that disorder in intestinal immune 
response is associated with defect in gut permeability 
[47]. In such conditions there is usually increased levels 
of interleukin (IL)-1, IL-6, tumor necrosis factor-α, and 
interferon-γ [47,125]. These immune factors not only 
activate local immunocytes and cells of the enteric brain, 
but also, distant immunocytes as well as microglia and 
astrocytes in the central nervous system (Figure 4) 
[125]. In Drosophila AD model, Wu et al. reported that 
enteric infection resulting to gut dysbiosis increased 
the movement of both local and distant immunocytes 
such that these cells were more readily attracted to the 
brain, thereby worsening the progression of AD [91]. 
Interestingly, genetic depletion of the immunocytes lead 
to attenuation of neuroinflammation, and consequently, 
alleviated neurodegeneration [91].

The abnormal (pathogenic) gut microbiota produce 
high quantities of lipopolysaccharides, peptidoglycan, 

Figure 3: Factors (invasion by pathogenic microbes, unhealthy nutrition, ageing, and other environmental and genetic factors) that disrupt 
commensal microbes of the gut result to damaged epithelium
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lipoteichoic acid, teichoic acid, lipoarabinomannan, 
arabinogalactan, lipopeptides, flagellin, and foreign 
nuclear materials such as bacterial DNA and viral RNA, 
which can trigger the production of proinflammatory 
cytokines that may trigger the onset of certain peripheral 
and central diseases characterized by inflammatory 
reactions [8,138,139]. These structural motifs, which 
are associated with pathogenic microbes, are known as 
pathogen-associated molecular patterns, PAMPs. PAMPs 
are sensed by pattern recognition receptors (PRRs) of 
the host cell plasma membrane. Toll like receptor (TLR) 
is an example of PRRs. PRR can also sense cell damage 
by recognizing substances released upon cell damage, 
called damage-associated molecular patterns, DAMPs 
[140–143]. DAMPs include certain extracellular matrix 
components released during cell damage (e.g. laminin, 
elastin and collagen-derived peptides, fibronectin, 
matrix metalloproteinase-3 and -13, versican, and 
biglycan) and cytoplasmic proteins such as heat shock 
proteins, RNA and mitochondrial DNA, nuclear DNA, IL-
1, high mobility group box 1 protein, histones, adenosine 
triphosphate, and antimicrobial peptides [144–147]. 

TLRs recognize pathogenic microbes by binding to PAMPs 
or DAMPs, with resultant activation of transcription 

factors such as nuclear factor kappa of B cell including the 
interferon regulatory factors, leading to the synthesis of 
cytokines, and interferons [140,144,147]. The cytokines 
exert their activities on the cell mainly via JAK-STAT 
pathway [140,147,148]. 

It should be mentioned, however, that there are multiple 
pathways through which the cell recognizes pathogenic 
microbes. The pattern recognition molecules MBL 
(mannose-binding lectin) and ficolins functioning as 
opsonins link up with MBL-associated serine protease-2 
(MASP-2), forming MBL-MASP-2 complex, which 
recognizes and subsequently binds to carbohydrate 
molecules (e.g. N-acetylglucosamine) of bacterial cell 
wall to initiate series of reactions [149–152]. Initially 
these reactions are supposed to control the activity 
of the pathogenic microbes, but subsequently result 
in excessive production of immune factors (including 
proinflammatory cytokines), which in turn leads to 
altered balance or composition of the gut microbiota, 
and increased intestinal permeability [152,153], 
thereby promoting the transport of these cytokines into 
circulation [93]. The proinflammatory cytokines can 
be transported to different tissues including the brain, 

Figure 4: Neuroastroglial signaling of microbial toxins and proinflammatory cytokines disrupt synaptic network of behavior, learning, 
memory and cognition, underlying the onset of AD development
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initiating neuroinflammatory process and synthesis of 
amyloid proteins, which can trigger the development 
or progression of AD [8,124]. Furthermore, certain 
abnormal microbes of the gut, known as amyloidogenic 
bacteria, can produce amyloid proteins, which contribute 
to the development or progression of AD [8]. 

It should be noted, however that not only intestinal 
immune responses, but also liver innate immune 
responses immensely contribute to the regulation 
of gut immune activity. The liver is a crucial innate 
immune organ that harbors many immune cells. For 
example, the hepatic Kupffer cells can produce signaling 
molecules in response to bacterial lipopolysaccharide 
and superantigens, which in turn activates the hepatic 
natural killer cells to produce interferon-γ [154–157]. 

Substantial decrease in Bifidobacterium sp., E. rectale, B. 
fragilis has been reported in AD [47,48]. This decrease 
in the number of gut commensals correlated well with 
cerebrospinal fluid biomarkers of AD [48]. 

Neural connectivity and calcium signaling defect

Neurotransmitter signaling defect influences neuronal 
Ca2+ homeostasis, which in turn affects the β-amyloid 
precursor protein cleavage. Recent works have 
shown that the gut alone produces over 60 types 
of neurotransmitters. Thus dysfunctions in the gut 
homeostasis due to abnormal gut microbiota can result 
to disordered synthesis of the gut neurotransmitters, 
which in turn can affects signaling in the gut-brain axis, 
Ca2+ signaling, subsequently leading to increased amyloid 
protein production [158]. But accumulation of Aβ can 
disrupt both peripheral and central Ca2+ homeostasis 
and render neurons susceptible to metabolic or other 
environmental insults or injury, consequently resulting 
to apoptotic cell death as seen in AD [125]. 

At the peripheral level (gut), Ca2+ homeostasis in the cell 
is maintained, in part, by claudins and G-protein coupled 
Ca2+ sensing receptor (CaSR) [95,159,160]. Following 
dysfunctions in claudin expression due to the activities 
of abnormal gut microbiota, claudin-CaSR signaling 
becomes altered resulting to Ca2+ singling defect that 
may lead to cellular toxicity. Though Ca2+ is a secondary 
messenger that is required in almost every cell for a 
couple of physiological processes, excessive or prolonged 
unregulated increase can become detrimental to the cell 
[92,148]. Surprisingly, the vagus nerve endings, which 
mediate information transfer in the microbiota-gut-
brain axis, also express the CaSR. Dysfunctions of CaSR 
signaling in the vagus nerve have been associated with 
disorder in efferent electrical activity in this nerve and 
its integrating center and immune system dysfunctions 
[95,159]. These disorders can worsen the development 
and progression of AD. Importantly, destabilization 
of intracellular Ca2+ signaling has been implicated in 
neurodegeneration associated with AD [96,97,161]. 

Excessive or prolonged elevation of intracellular Ca2+ 
level at the peripheral and central level also activates 
lipases, which degrades plasma membrane proteins to 
generate free radicals that further cause destruction of 
cellular components. Sustained increase in cytosolic Ca2+ 
level can activate Ca2+-dependent proteases, which may 
lead to hyperphosphorylation of microtubule associated 
proteins, triggering changes in cytoskeleton, similar to 
those observed in AD [96,97,148,161]. 

More so, disordered electrical activity in central 
neurons can activate the cleavage of APP resulting to 
the formation of sAPPβ and Aβ [97]. The secreted form 
of APP cleavage as well as the accumulating amyloid 
peptide can substantially affect neurotransmitter 
(e.g. glutamate, gamma-aminobutyric acid, GABA) 
signaling that further aggravate the effect of the disease 
on synaptic plasticity and development [96,148]. 
Relatively recent study suggests that inhibition of long 
term potentiation is one of the main mechanisms that 
mediates cognitive impairment in AD, and may be due 
to higher levels of GABAA receptor alpha1 subunit, 
NR2B subunit of the N-methyl-D-aspartate (NMDA) 
receptor, and postsynaptic density marker 95 (PSD-95) 
[162]. The aggregates of Aβ resulting to dysfunctional 
neurotransmitter signaling can lead to neuro- and glio-
toxicity mediated by glutamate, and the kainite and 
NMDA receptors, among others [22,163]. 

Dysfunctions of gut microbiota–endocrine pathway

Endocrine connectivity is a bidirectional functional 
association between the gut microbiota and brain 
structures that allows the transfer of humoral factors, 
which mediate a range of brain activities including 
cognitive processes [164,165]. Gut derived hormones 
regulate energy homeostasis, and exert considerable 
influence on the enteric nervous system, central nervous 
system, modulating cognitive functions [20,166]. 

Growth hormones protect neurons from toxicity 
and excessive excitatory signaling [157], in part by 
stabilizing Ca2+ signaling, suppressing the expression 
of kainite, NMDA, and certain subunits of GABAA 
receptors in multiple brain areas. Such growth factors 
include but are not limited to basic fibroblast growth 
factor, nerve growth factor, and insulin like growth 
factors [148,157]. In addition, these growth factors have 
protective role on mitochondrial functions. This way, 
growth factors prevents neurodegenerative processes 
that characterized such disease as AD [20]. Furthermore, 
the gut synthesized hormones leptin, ghrelin, glucagon-
like peptide 1, and glucose-dependent insulinotropic 
polypeptide confer neuroprotective effects against 
toxicity induced Aβ aggregation. Reduction of the level 
of these gut hormones in AD has been reported. More 
importantly, these hormones have been shown to protect 
both neurons and glial cells from metabolic stress due to 
Aβ. Also, the gut hormones are also believed to prevent 
the formation of oligomers and plaques seen in AD [20]. 
Thus application of analogs of these hormones may 
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substantially cause improvement of symptoms and slow 
the progression of AD. 

AD is also related to brain insulin signaling. Cerebral 
insulin signaling disorder has been reported to result 
from the aggregation of Aβ, possibly due to altered 
expression of insulin genes [166–168]. This is believed 
to be the underlying cause of insulin resistance in AD 
patients. Consequently, pharmacological development 
of insulin degrading enzyme and neprilysin for Aβ 
degradation in AD therapy may have positive results for 
sufferers of the disease [167,168]. 

Increase in toxins produced by the abnormal gut 
microbiota can accelerate the development or 
worsen the progression of Alzheimer’s disease

Abnormal gut microbiota, characterized by the presence 
of pathogenic microbes as well as reduction in the 
number of beneficial microbes, results in increased 
production of toxic metabolites such as p-cresol sulfate, 
indole-3 acetic, indoxyl sulfate, trimethylamine N-oxide, 
phenol- and sulfur-containing compounds as well as 
ammonia [169–175]. Increased production of these 
toxins by the activities of the abnormal gut microbiota can 
result to disorders of metabolism and local and systemic 
inflammatory responses [169–171]. Furthermore, 
these toxins can damage the intestinal barrier and 
normal composition of the gut microbiota, leading 
to translocation of potentially pathogenic bacteria 
into the bloodstream [93,176]. The inflammatory 
responses, neurotoxicity due to the toxic metabolites 
can facilitate the development and progression of AD 
[8–10,47,48,166–168]. 

Decrease in metabolic products of beneficial 
microbiota is a critical underlying factor for the 
development and progression of Alzheimer’s disease 

The gut microbiota synthesizes several bioactive 
molecules, notably, folate, biotin, short chain fatty acids 
such as propionate, acetate and butyrate, and other 
bioactive molecules, which modulate both peripheral 
and central processes, preventing metabolic stress 
and other environmental insults or injury [56,177]. 
The gut microbiota metabolites are used locally by 
the epithelial cells of the gut or transported into the 
circulatory system to exert a plethora of effects on 
the host cell. The short chain fatty acids, for instance, 
exert their influences on the cell, at least in part, by 
activating the G-protein-coupled receptors, GPR41, 
GPR43, and GPR109 [178]. The short chain fatty acids, 
in particular, also exert a neuromodulatory influence 
on certain gut neuroendocrine cells and enterocytes, 
especially of the colon, which are specialized in the 
synthesis of incretin hormone glucagon-like peptide-1 
and a couple of other gut peptides [20]. The short 
chain fatty acids exert antioxidant, phagocytotic, 
antitumorigenic, antimicrobial, chemotaxic, and anti-
inflammatory influence on the gut [178]. The overall 
effect of adequate gut humoral signaling is to decrease 

the risk of development or progression of AD [20]. 
Thus disordered signaling of gut hormones due to the 
activities of abnormal gut microbiota will culminate in 
increased risk of development or progression of AD [9]. 
Therapeutic application of short chain fatty acids in AD 
prevention or treatment may have positive implications 
on the phase conversion and incidence of the disease.

The gut microbiota can shape the development 
and progression of Alzheimer’s disease through 
epigenetic modifications of the host cells 

The epigenetic modifications or gene signature 
alteration resulting from the influences of the 
environment or stimuli from other sources (exercise, 
diet, toxins) can confer behavioral features that are 
seen in patients with AD or other mental disorders 
[49,179]. Epigenetic modifications such as DNA 
methylation or histone modifications can affect gene 
expression and thus cause behavioral and cognitive 
changes seen in some neurological disorders [180]. 
These epigenetic modifications also lead to changes in 
second messenger signaling that compromise synaptic 
long-term potentiation in brain regions implicated in 
cognitive processing [49]. The gut microbiota can shape 
the host system by regulation of the epigenetic profile of 
the host cells. Epigenetic modification by gut microbiota 
can influence the development or progression of AD. 
Through their metabolites, the gut commensals regulate 
immune cell functions (e.g. cytokine synthesis). For 
example, short-chain fatty acids such as butyrate and 
propionate can promote the differentiation of naïve 
T cell into Treg by inhibiting histone deacetylases, a 
distinct class of epigenome modifying enzymes, and 
opposite in function to histone acetyltransferases. The 
histone deacetylases function by removing the acetyl 
group from lysine residues on cellular structures [181–
183]. Metabolic pathways such as tricarboxylic acid 
cycle regulate epigenetic modification. The epigenetic 
modification “DNA methylation” is utilized by the gut 
microbiota to influence the host cell functions, by their 
regulatory influence on the enzymes that regulate this 
methylation, known as DNA methyltransferases [179]. 

Thus the gut microbiota forms a critical nexus between 
the gut and the host by epigenetic modification [177]. 
Pathogenic microbes or disordered gut microbiota affect 
epigenetic profile of cells via direct changes on the gut 
microbiota or indirect changes of their metabolites 
[177]. For instance choline- or methyl-scavenging 
bacteria increase susceptibility to metabolic disease 
(methyl groups and choline are required for epigenetic 
modifications) [184]. 

Bacteriotherapy as potential treatment option for 
Alzheimer’s disease

Since commensal microorganisms can influence local and 
distant sites, there is potential positive influence on the 
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development or progression of AD if used as therapeutic 
option (Figure 5) [185,186]. The use of nutrietics 
or nutraceuticals (also known as psychobiotics) 
such as probiotics, prebiotics and synbiotics to treat 
cognitive and behavioral disorders has been shown 
to alleviate the symptoms of AD (Figure 5) [187–189]. 
Probiotics are live microorganisms similar to beneficial 
microorganisms found in the gut (e.g. Bifidobacterium, 
Saccharomyces boulardii, Lactobacilli–L. acidophilus, 
L. casei, L. paracasei, L. zeae, L. rahmnosus, L. reuteri/ 
L. fermentum) [72,73,187]. Prebiotics are the non-
digestible components of food that confer substantial 
benefit to the host by enhancing the activities of the gut 
microbiota [174]. Synbiotics are a combination of both 
probiotics and prebiotics [174,190,191].

Psychobiotics, according to recent preclinical and clinical 
evidences, repress the production of neuro- and glio-
toxins, and may provide an effective intervention strategy 
for treating neurodevelopmental and neurodegenerative 
diseases [84,173,174]. Psychobiotics activate metabolic, 
hormonal, neural pathways that prevent the detrimental 
effects of Aβ aggregation or prevent Aβ oligomer or 
plaque formation [54]. The nutrietics decrease the 
circulating proinflammatory cytokines and increase 
signaling of neuro- and glio-protective factors that 
prevent neurodegenerative processes. Also, nutrietics 
can restore disordered neuronal and glial proteolytic 
pathways, which are compensatory means by which 
brain cells prevent accumulation of toxins and apoptotic 
cell death [20].

There are two main types of psychobioticotherapy–
oral bacteriotherapy and fecal microbiota 
transfer [8].

Though treatment with psychobiotics has shown to 
substantially increase the beneficial community of 
gut microbiota and improved learning and memory 
functions in both animal models of AD [192] and human 
subjects with cognitive impairment [20,89,193–195], 
psychobiotics such as probiotics may not always give the 
expected result of improving cognitive functions in AD 
for the following reasons. The limitation of the current 
available probiotics includes their use for the purpose 
of prophylactics in high-risk individuals. Furthermore, 
colonization of the gut by the components of the 
probiotics requires time before the benefits are realized, 
especially in high risk individuals. The interaction 
between the pathogenic gut microbiota and probiotic 

components may not always result to positive effects 
that will be observed in the individual. How the different 
polymorphic forms of the gut microbiota may interact 
with probiotic bacteria has not been fully established. 
Also, the expected benefits may substantially reduce 
due to the methods of storage or adverse effects of 
stomach acidity. Though microencapsulation techniques 
can be developed for specific strains used in probiotics 
to improve bacterial survival and prevent damages in 
adverse conditions caused by external environment. 
Comorbidities such as viral diseases in the gut and other 
illnesses can reduce the benefits of probiotics use [196]. 

Oral bacteriotherapy

Clinical trials have shown that ingestion of psychobiotics 
improves both gut and brain functions in patients with 
AD [84]. Therefore oral bacteriotherapy can be used in 
AD treatment [20]. 

Commensal microbiota transfer therapy

Several reports have shown that transplantation of 
commensal microbes into the gut reduces symptoms of gut 
inflammation, neurodegenerative, neurodevelopment 
and psychological disorders [197–199]. A recent clinical 
trial revealed that a high initial dose followed by a lower 
daily maintenance dose of microbiota transfer therapy 
for 8 weeks confer beneficial role on gut microbiota 
composition and significantly reduces of symptoms of 
gastrointestinal and neurological disorders [89]. 

Does Alzheimer’s disease predispose an individual 
to disorders in gut microbiota?

All studies [8–10,47,48] in this review support the 
hypothesis that AD is associated or is caused by 
disordered gut microbiota, however, none has precisely 
reported whether or not AD directly causes disorders in 
gut microbiota. It is therefore imperative to investigate 
the influences of AD (in different disease phases) on 
the gut microbiota while controlling for other factors 
such as ageing and epigenetic modifications of the gut 
microbiota. 

CONCLUSION

The association between gut microbiota and AD 
development and progression is due to multiple 
signaling mechanisms that involve metabolic, 
neuroimmune, neurohumoral pathways, modulated by 

Figure 5: Multiple influences of psychobiotics
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several factors. The gut microbiota has substantial role 
in the development and progression of AD though the 
microbiota-gut-brain axis which mediates a bidirectional 
flow of substances. This review strategically highlights 
potential therapeutic options for AD. 
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